林金榮,涂嘉猷,陳春暉 台灣省水產試驗所 澎湖分所 (1997 年 6 月 21 日接受)

紅甘鰺種魚的池中馴育及誘導產卵試驗

摘要

爲探討紅甘鰺於生殖季節前,在室內水泥池培育對成熟及誘導產卵的可行性,將 18 尾 2 齡之種魚於生殖季節前約 4 個月,自海上箱網移入陸上室內水泥池,純以下雜魚投餵種魚。結果發現,種魚於室內池子之攝餌、成長及生殖腺的發育均相當正常,但種魚於生殖期間,攝餌率低下,成長遲滯。生殖季節時,每間隔 2 週以人類胎盤絨毛激素注射全部的種魚,劑量爲 $0.5\pm0.1\ \text{IU/g}$,結果在 5 次的注射中,有 4 次成功誘導產卵,產卵的水溫範圍爲 21.5 - 25.5 $^{\circ}$,鹽度爲 33.7 - 35.1 ppt 。產卵時機一般開始發生於注射後 36 - 40 小時間,每次產卵持續 3 - 5 日。 3 月 13 日至 5 月 10 日生殖期間,總計採獲 261 萬粒卵,浮上卵的比率佔 50.25%。

關鍵詞:紅甘鰺,種魚培育,室內水泥池,誘導產卵

紅甘鰺 Seriola dumerili,俗稱紅甘或竹五,屬鰺科 (Carangidae) 魚類,分布於亞熱帶海域,是鰺科中最 大且成長最快之魚種,一年可成長3公斤以上,肉 質鮮美,是製作生魚片的上好材料,價格昂貴,每公 斤介於 400 至 500 元之間,而且是具有外銷潛力之國 際性魚種,養殖經濟價值相當高,目前已是本省外海 箱網養殖重要魚種之一。天然魚苗富產於中國大陸海 南島,本省產量非常少,魚苗價格昂貴,全長3至4 公分進口魚苗每尾 30 至 50 元,爲解決魚苗供應問 題,開發人工繁殖技術,大量生產人工種苗,降低魚 苗成本乃當務之急。種魚培育及採卵是人工繁殖之首 要關鍵,以往利用定置網捕獲之天然種魚,利用激素 催熟採卵雖可取得受精卵,但量少且不穩定,在資源 量日益減少之漁業環境下,此方法將更加困難。因 此,爲穩定量產良質受精卵,自行培育種魚及建立採 卵技術勢在必行。

利用海上箱網培育種魚於日本已有成果^(1,2)。本分所亦曾於澎湖內灣海上箱網培育種魚,一樣可發育成熟,但經挑選成熟度良好之種魚移入陸上產卵池採卵時,成績卻未臻理想。種魚因挑選、搬運及環境變遷之緊迫,於新環境中攝食情形不佳,生殖腺退化很

林金榮, 涂嘉猷, 陳春暉 (1997) 紅甘鰺種魚的池中馴育及誘導產卵試驗. 水產研究, 5(1): 71-79.

快,終至無法生殖。如果,種魚於移入產卵池時立即 以激素催熟產卵,成熟度良好的種魚於催熟後第 2 日,通常能成熟產卵,但受精率很低,往後同樣因未 能適應新環境且攝食情況不佳,生殖腺退化終至無法 生殖。爲解決上述問題,本試驗將種魚提早於繁殖季 節前,自箱網移至陸上室內水泥池,於室內人爲環境 下培育種魚,探討其成熟產卵之可行性。

材料與方法

一、種魚池和種魚培育

種魚池為 $10 \text{ m} \times 8 \text{ m} \times 3 \text{ m}$ 之室內八角水泥池,蓄水量約 150 噸,池中設打氣,並以 4.6 kw 之抽水馬達抽取種魚池內的水製造水流,養殖用水抽自海邊,海水鹽度範圍 $33.7 \sim 35.1 \text{ ppt}$ 。

種魚爲箱網養成之二年魚,於 1996 年 10 月 30 日 購入 18 尾,經 1 週之環境適應後逐尾測定且開始試驗,種魚並以微晶核(Transponder)植入背部標識之種魚,平均體重 4.92 ± 0.96 kg $(3.15\sim6.75$ kg),平均尾叉長 66.44 ± 4.66 cm $(58.0\sim75.5$ cm)。以新鮮下雜魚爲餌,下雜魚以銅鏡鰺 Decapterus

maruadsi、山台秋姑魚(紅魚仔)Upeneus sundaicus 及沙梭 Sillago sihama 爲主,每日約 10:00 投餵,每日投餌 1 次,每週投餵 5 或 6 日,飼育期間 24 小時流水,注水量 6 噸/小時,而且每週大量換水 1 次,換水量二分之一至三分之二,同時,以硫酸銅藥浴,濃度爲 $0.5 \sim 1.0$ ppm。

中間測定每月 1 次,先以掃描器識別種魚,再逐一測定尾叉長、體長及體重。成長情形分別以平均增重率(Average weight gain)、平均日成長率(Average daily growth rate)、平均日攝餌率(Average daily feeding rate)、增肉係數(Feed conversion ratio)、餌料效率(Feed efficiency)及肥滿度(Condition factor)表示之:

肥滿度=〔平均體重/(平均尾叉長)³〕×1000 平均增重率(%)=(平均增重量/初期平均體重) ×100

平均日攝餌率(%)={期間總攝餌量/〔飼育日數 ×(初期平均體重+末期平均體重)/2×(初期尾數 +末期尾數)/2]}×100

平均日成長率 (%) = {平均增重量/[飼育日數× $(初期平均體重+末期平均體重)/2} \times 100$

增肉係數=期間總攝餌量/〔平均增重量×(初期 尾數+終期尾數)/2〕

餌料效率 (%)= (1/增肉係數) × 100

二、催熟與採卵

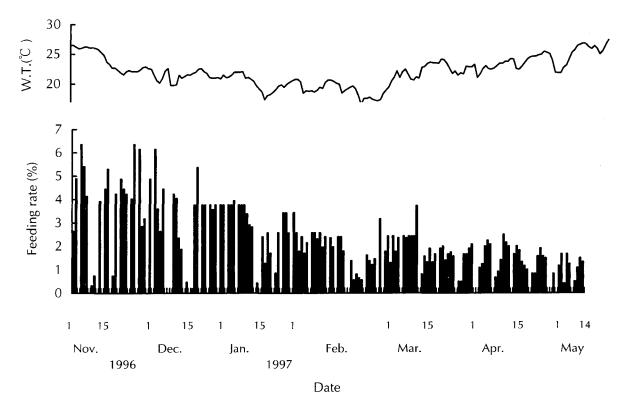
利用成長過程中測定外部形質時,檢查種魚成熟情形,觀察泌尿乳突、擠壓腹部及軟管抽卵相互配合、了解種魚成熟狀況。當部份成熟度良好的種魚、其卵已發育至成熟期時,全部種魚均以人類胎盤絨毛激素(Human chorionic gonadotropin)注射誘導產卵,劑量爲 0.5 ± 0.1 IU/g,注射 1 針,注射時間爲 10:00-11:00,誘導產卵期間(3月13日至5月10日)每隔2週注射1次。採卵方法爲種魚經激素注射後,留於原飼育池自然產卵受精。

三、集卵、卵的估算及測定

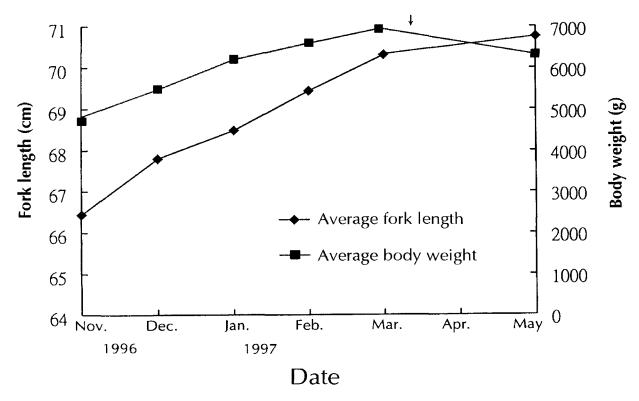
產卵池外設有集卵槽,以流水溢流方法集卵,

17:00 左右將集卵網張掛於集卵槽中,隔日早上將卵收集,採集之卵先於玻璃缸中利用比重法分離好壞卵,再將好壞卵分別收集、稱重,再依重量換算成卵數。卵徑、油球直徑利用投影機放大 50 倍測定。

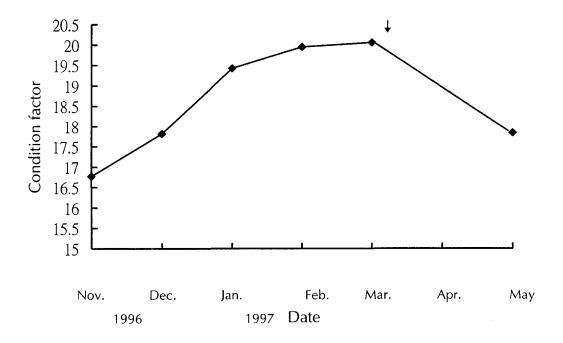
結 果


一、種魚培育

18 尾種魚經 6 個月試驗,全部活存,而且未曾發 生疾病。水溫和攝餌情形如 Fig. 1 所示,水溫分布範 圍爲 16.6 - 26.9 ℃,試驗開始起水溫緩慢下降, 2 月 份水溫最低, 3 月起開始回升。日攝餌率於試驗開始 時較高,最高達 6.3%,爾後逐漸下降至試驗結束, 月平均日攝餌率如 Fig. 4 , 11 月份最高,其值為 2.68%, 3月至5月最低,其值為1.12%。培育結果 如 Fig. 2 - 4 所示,試驗開始第 1 、 2 個月,成長速度 較快,爾後逐漸減緩,誘導產卵期間爲負成長。平均 日成長率第1個月最高,其值為0.42%,第2個月為 0.34%,爾後急速下降,第4個月為0.15%,誘導產 卵期間爲 - 0.16%。餌料效率亦有同樣趨勢,第 1 個 月最高,其值為 15.65%, 爾後逐漸下降至 10.46%。 肥滿度於試驗開始時第1、2個月快速增加,爾後增 加速度減緩,誘導產卵期間則顯著下降,平均肥滿度 最高為 20.07。


二、種魚產卵

種魚經多次檢查,性比爲 13 ♀:5 ♂,種魚經檢查 及激素處理,須 2 日方能恢復攝食。試驗期間共注射 5 次,前 4 次均產卵成功,第 1 次產卵發生於催熟後 第 5 日,餘 3 次均發生於次日深夜,約於催產後 36 至 40 小時。


產卵前追尾現象開始於夜晚 21:30 左右,種魚於水面下約 50-100 公分處繞圈快速追逐,持續約 1 小時後,雌魚偶爾脫隊游至池邊產卵,雄魚發現立即追逐過去,進行排卵排精,此時繞圈之行動頓時被打亂,至雌魚歸隊後又回復繞圈追尾遊戲,此追尾產卵行爲持續至產卵結束。產卵時間爲深夜 23:00 至翌日清晨01:00 左右。

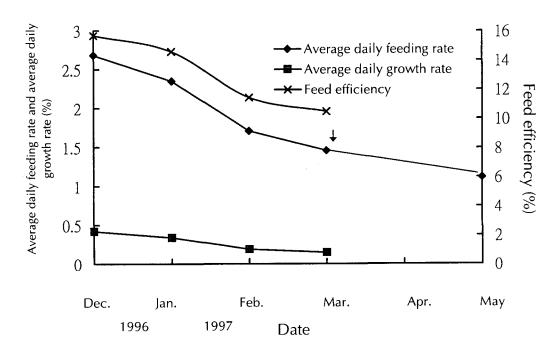

Fig. 1. Daily changes in water temperature and feeding rate of purplish amberjack *Seriola dumerili* reared in the indoor pond.

Fig. 2. Fork length and body wieght of broodstock of purplish amberjack reared in the indoor pond (arrow shows broodstocks start to spawn).

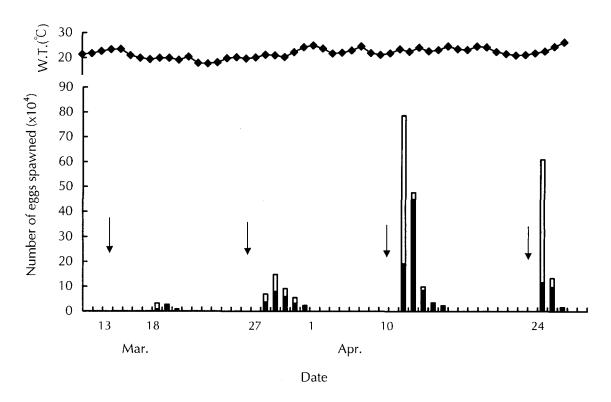
Fig. 3. Condition factor of broodstock of purplish amberjack reared in the indoor pond (arrow shows broodsstocks start to spawn).

Fig. 4. The average daily feeding rate, average daily growth rate and feed efficiency of broodstock of purplish amberjack reared in the indoor pond (arrow shows broodstocks start to spawn).

激素處理時間及採卵結果如 Table 1 及 Fig. 5 所示, 5 次注射中有 4 次成功誘導產卵,每次產卵持續 3-5 日,第 1 次採卵量最少,共採獲卵 6.8 萬粒,其中浮上卵率 34.67%,第 2 次共採獲卵 38.8 萬粒,其中浮上卵率 39.59%,第 3 次共採獲卵 142.1 萬粒,其中浮上卵率 44.71%,第 4 次共採獲卵 73.3 萬粒,其中浮上卵率 68.06%。產卵期間自 3 月 18 日至 4 月 28 日, 4 次產卵的產卵日數計 16 日,共採獲卵 261 萬粒,浮上卵總數 131.4 萬粒,浮上卵率 50.25%。

每日採卵數自 1.8 萬粒至 78.8 萬粒, 差異相當大, 但採卵量分布型態卻相當一致, 每次採卵之第 1 日顯

著較多,然後逐日減少至停止產卵,如 4 月 12 日採卵量 78.8 萬粒, 4 月 13 日 47.7 萬粒, 4 月 14 日只有 9.9 萬粒, 4 月 15 、 16 日更少,分別爲 3.5 萬粒及 2.3 萬粒:浮上卵率自 0 至 80.88 %,差異相當大,每次產卵之第 1 日較高,第 2 日起顯著降低。平均卵徑自 1.033 mm 至 1.146 mm,平均卵徑於每次產卵中之第 1 日顯著較大,爾後逐日減小,如 4 月 12 日 1.117 mm, 4 月 13 日的 1.035 mm, 4 月 14 日的 1.033 mm。多油球率自 4.17%至 61.01%,多油球率於每次產卵中之第 1 日顯著較高,爾後逐日降低,如 4 月 12 日的 33.33%, 4 月 13 日的 23.68%, 4 月 14 日的 7.0%。


Table 1. Spawning results of purplish amberjack reared in the indoor pond.

Date	Eggs spawned (x 10 ⁴)	Buoyant rate(%)	Fertilization rate(%)	Eggs diameter (mm)	Oil globule diameter(mm)	Multiple oil globule rate(%)
03/18/1997	3.2	71.43	21.37	1.146 ± 0.034	0.257 ± 0.017	4.17
03/29/19977	6.9	45.45	58.37	1.116 ± 0.021	0.281 ± 0.012	25.00
04/12/1997	78.8	75.43	69.86	1.117 ± 0.037	0.250 ± 0.016	33.33
04/13/1997	47.7	5.66	78.51	1.035 ± 0.079	0.225 ± 0.010	23.68
04/14/1997	9.9	13.64	87.5	1.033 ± 0.028	0.228 ± 0.015	7.00
04/26/1997	61.2	80.88	89.91	1.098 ± 0.036	0.207 ± 0.012	61.01
04/27/1997	10.3	3.51	52.91	10.44 ± 0.105	0.233 ± 0.012	12.70

討論

紅甘鰺爲亞熱帶魚種,成長適溫範圍 20 ~ 31 ℃,日本近畿大學白鮃實驗場和高知縣水試所觀察結果,冬季因水溫低攝餌量低下,成長停滯^(3,4)。魚類於成熟產卵期間因攝食改變、成熟產卵能量之消耗……等影響,成長一般均受到抑制,日本八重山事業場發現紅甘鰺於成熟產卵期間有成長停滯之傾向⁽⁵⁾。本試驗亦有類似結果,1、2月份爲低水溫期且接近成熟產卵,平均日攝餌率及日成長率顯著降低,3、4月份爲產卵期間,成長完全被抑制且爲負成長。

兼松等⁽⁵⁾於日本八重山海上箱網培育紅甘鰺種魚,2齡種魚之平均日成長率及平均日攝餌率分別為0.20%及1.51%。本試驗中,產卵前4個月之平均日成長率及平均日攝餌率分別為0.28%及2.05%,均比八重山事業場之結果高,餌料效率方面,八重山事業場2齡魚為12.73%,本試驗中,產卵前4個月平均為13.02%(10.46%~15.65%),差異不大。因此,本試驗於室內水泥池培育紅甘鰺2齡種魚和日本八重山事業場於海上箱網培育2齡種魚有類似結果,於攝餌量、餌料效率和成長各方面均沒有顯著差異,換句話說,紅甘鰺種魚於本試驗中之室內池培育,其攝餌及成長均相當正常。

Fig. 5. Daily changes in water temperature and the number of eggs spawned by purplish amberjack reared in the indoor pond in 1997 (arrows show hormone injection).

☐ : Buoyant eggs ☐ : Sunken eggs

種魚經激素催熟採卵的方法,可分爲急速性及慢速 性兩種(6,7)。慢速催熟一般所使用之激素包含卵細胞發 育之啟動激素和促進發育激素,分別如甲基睪固酮 (Methyltestosterone) 和黃體激素釋放激素 (Luteining hormone-releasing hormone) 及其類似物,將激素混 合製成藥丸或放入特製細管中,然後植入魚體內,經 此巧妙的設計,激素於魚體內緩慢地釋放,因而持續 緩慢地促進卵細胞發育乃至成熟。急速催熟一般是在 卵黃形成 (Vitellogenesis) 末期行之,其目的爲促進 卵母細胞之最後成熟及排卵,常用之激素有 HCG 、 腦下垂體抽出物、 LHRH 及其類似物,急速催熟成功 之先決條件爲卵細胞須達成熟卵細胞期(卵黃第三期) (Tertiary yolk globule stage),土津井(1)以人用的促性 腺激素(Gonadotropin)催熟紅甘鰺種魚,當卵徑分 布曲線的高峰 (Peak) 小於 600 μ時, 結果均無法成 功。本試驗使用的 HCG 和 Gonadotropin 一樣是作 用於卵巢之激素,卵的發育同樣須達成熟期方能被催 熟採卵,故由本試驗成功誘導產卵得知,種魚之卵細 胞已發育至成熟期,又本試驗中之種魚於產卵前4個

月即已搬入室內池培育,因此,紅甘鰺種魚於室內人 爲環境下培育,卵細胞仍可發育至成熟期,經簡單的 激素處理,種魚可自然產卵受精。

升間等(8)於 1988 年利用海上箱網培育之 2 + 齡紅 甘鰺種魚,利用激素催熟採卵,種魚經抽卵挑選 12 尾 (6 ♀ 6 \$), 平均體重 8.1 kg (6.9 ~ 9.5 kg), 激素 單獨使用 HCG , 劑量為 1,000 IU/kg BW , 激素處理 2次,結果採卵日數7日,總採卵數397.7萬粒,受 精卵數 315.8 萬粒,平均卵徑 1.06 mm (1.02 ~ 1.08 mm)。立原等⁽⁹⁾ 於 1989 年利用 3 ⁺ 齡紅甘鰺種魚, 利用激素催熟採卵,種魚 14 雄 12 雌,平均體重 5.6 kg (4.2 ~ 12.8 kg), 激素及其劑量為 HCG 500 IU/kg BW 加上鮭魚 Oncorhynchus keta 凍乾腦下垂體 7mg/kg BW , 激素處理 4 次, 結果產卵日數共 12 日, 共採 獲卵 140 萬粒。本試驗中種魚是 2 + 齡魚,產卵日數 共 16 日,總採卵數 261 萬粒,浮上卵率 50.25%,平 均卵徑 1.033 ~ 1.146 mm ,多油球率 4.17 ~ 61.01%。由以上結果得知,本試驗採卵次數最多,產 卵期間最長,總採卵數雖比升間之結果少,但比立原 之結果顯著較多,由此得知,本試驗結果是令人滿意 的,紅甘鰺種魚於室內人為環境下可成熟產卵。

本試驗種魚於激素處理後 36 小時開始產卵,和立原等⁽⁹⁾有同樣結果。但因激素處理時間不同,本試驗種魚產卵時間為 23:00 至 01:00 ,立原等之觀察結果則為 3:00 ~ 5:00 。

種魚於追尾時,游泳速度明顯加快。立原測定結果,平常游泳速度為 0.44 m/sec,追尾時約平常之 3 倍,平均為 1.40 m/sec。

縱帶鰺 Pseudocaranx dentex 以激素處理所得之受精卵之卵徑比自然產卵之卵徑小(10),立原(9)以激素處理 4 + 齡紅甘鰺種魚亦有類似結果。本試驗更明顯得知卵徑受激素處理之影響,產卵首日之平均卵徑顯著較大,次日之卵徑顯著減小,如 4 月 12 日採獲卵之平均卵徑為 1.117 mm, 4 月 13、14 日之平均卵徑分別為 1.035 mm 及 1.033 mm,此乃因卵黃蓄積未完全之卵受激素催熟所致。

水溫是種魚產卵重要影響因素之一。日本八重山紅甘鰺種魚自然產卵之盛產期於 4 月中旬至 5 月中旬,水溫介於 24 °C 和 25 °C 之間, 2 、 3 月間水溫較低時,利用激素催熟後方能自然產卵⁽⁸⁾。立原⁽⁹⁾於日本長崎利用陸上圓形水泥池進行紅甘鰺之採卵試驗中,水溫亦調高爲 23 ~ 25 °C。本試驗產卵期間水溫介於 21.6 °C 至 25.5 °C 之間。

產卵量及卵質和種魚大小有直接關係,本試驗之 4 次產卵中,產卵型態均非常類似, 3 - 5 日之產卵中,首日之產卵量及浮上卵率均較高,然後逐日減少至產卵停止,因此,採獲卵的數量和平均浮上卵率均不高。立原⁽⁹⁾以激素處理 3 + 齡種魚亦有類似的結果,但 4 + 齡種魚之結果卻不一樣,種魚只經激素處理 1 次後即連續產卵至產卵結束。產卵期 31 日中共產卵 19 日,第 2 、 3 日之產卵量及浮上卵率雖同樣明顯下降,但第 4 日以後,產卵量恢復至首日之數量,且浮上卵率均相當高,產卵量和卵質因而大幅提升。又種魚營養直接影響產卵量及卵質(11-13),本試驗對種魚營養無特別安排,對卵質可能已造成影響,浮上卵率 3.51 ~ 80.88%,平均只達 50.25%。因此,種魚之營養需求及最適產卵年齡,將是今後重要之研究課題。

紅甘鰺種苗生產研究於日本已試驗 20 餘年,至今仍無法量產,主要原因是從養成種魚大量採卵仍有困難⁽⁸⁾。爲解決此瓶頸,本試驗首先探討室內人爲環境下培育之種魚是否能抱卵、成熟及產卵,結果已有令人滿意之結果,將來再逐步探討成熟產卵之各影響因

素,期能人為控制成熟產卵,那麼,受精卵大量取得 之問題,當可迎刃而解。

謝辭

本試驗之執行,承本所廖所長一久支持及建言,分所同 仁陳其欽先生協助種魚培育,黃助理研究員丁士及高素滿 小姐協助資料搜集及整理,白沙養殖場全體同仁協助測 定,及其他未具名審查者提供許多寶貴意見,特此致謝。

參考文獻

- 土津井憲彰,福田敏房,長谷川好男 (1979)養成カンパチの成熟狀態と人工採卵ふ化仔魚の飼育について. 栽培技研,8(2):95-103・
- 塚島康生,內田隆信,高屋雅生,荒川敏久(1987)カンパチ採卵試験.昭和62年度長崎縣水試事業報告書, 120-122.
- 3. 原田輝男 (1969) ハマチ、カンパチ. 養魚講座 4. 緑書房, 東京, 193-194.
- 4. 土津井憲彰,山口光明,福田敏房(1977)カンパチ種苗生産技術開發試験. 昭和 51 年度指定調査研究總和助成事業,高知縣水試年度報告書,1-10.
- 5. 兼松正衛, 升間主計, 照屋和久 (1991) 八重山水域に おけるカンパチの親魚養成と採卵について---- 親魚 飼育. 栽培技研, **19**(2): 93-97.
- Lee, C. S., C. S. Tamaru, J. E. Banno and C. D. Kelley (1986) Influence of Chronic administration of LHRH-analogue and/or 17 α-methyltestosterone on maturation in milkfish, *Chanos chanos*. Aquaculture, 59: 147-159
- 7. Tamaru, C. S., C. S. Lee, C. D. Kelley, J. E. Banno, P. Y. Ha, K. Aida and I. Hanyu (1988) Characterizing the stage of maturity most receptive to an acute LHRH-analogue therapy for inducing milkfish (*Chanos chanos*) to spawn. Aquaculture, **74**: 147-163.
- 8. 升間主計 (1993) カンパチ種苗生産の現狀と課題. 養殖, **9**: 69-72.
- 9. 立原一憲, 蛭子亮制, 塚島康生 (1993) カンパチの産 卵, 卵内發生および仔稚魚の形態變化. Nippon Suisan Gakkaishi, **59**(9): 1479-1488.
- 10. 虫明敬一,河野一利,長谷川 泉 (1989) シマアジの 採卵について---II. 栽培技研, 18: 15-24.

- 11. Watanabe, T., A. Itoh., C. Kitajima and S. Fujita (1984a) Effect of dietary protein level on reproduction of red sea bream. Nippon Suisan Gakkaishi, **50**: 1015-1022.
- 12. Watanabe, T., T. Arakawa, C. Kitajima and S. Fujita (1984b) Effect of nutritional quality of broodstock diets on reproduction of red sea bream. Nippon Suisan
- Gakkaishi, 50(3): 495-501.
- 13. Watanabe, T., A. Itoh, A. Murakami, Y. Tsukashima, C. Kitajima and S. Fujita (1984c) Effect of nutritional quality of diet given to broodstock on the verge of spawning on reproduction of red sea bream. Nippon Suisan Gakkaishi, **50**: 1023-1028.

Kim-Jung Lin, Jia-You Twu and Chung-Hui Chen
Penghu Branch, Taiwan Fisheries Research
Institute, Penghu 880, Taiwan.
(Accepted 21 June 1997)

Induced Spawning of Pond-tamed Purplish Amberjack Seriola dumerili

Abstract

In order to study the possibilities of maturation and induced spawning of indoor pond-tamed purplish amberjack *Seriola dumerili*, eighteen 2-year-old spawners were transferred into indoor concrete pond from October 30, 1996. They were fed only with trash fishes 5-6 times weekly. Results showed that the feeding activity, growth and gonadal development were similar to those seacage-farmed amberjack. From beginning of breeding season, the total spawners were received an injection of human chorionic hormone (HCG) every 2 week. Four occasions were succeeded to induce spawning among 5 trials. Spawnings were occurred at water temperature of 21.6 °C to 25.5 °C and salinity of 33.7 ppt to 35.1 ppt. Spawnings occurred commonly 36-40 h after the hormonal treatment and lasted for 3-5 days. In breeding season of March 13 to may 10, sixteen spawning days and 2.61 millions eggs were obtained. The buoyant rate of the total collected eggs was 50.25%.

Key words: Amberjack, *Seriola dumerili*, Broodstock cultivation, Indoor concrete tank, Induced spawning.