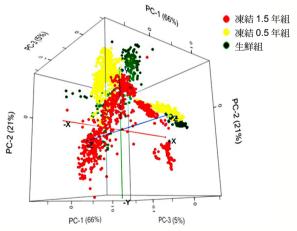
冷凍與生鮮水產品鑑識技術之研究

郭柏昇、葉駿達、蔡慧君 水産加工組

市售水產品偶有以冷凍再解凍來混充生 鮮魚貨販售給消費者,造成消費者購買到不符 合需求的產品;另學校營養午餐常會因更改菜 單而反覆冷凍解凍漁獲物,造成其品質下降與 鮮度改變。然傳統的鮮度測定方法較為費時, 因此無法立即、快速地提供的鮮度及反應出是 否為反覆解凍之魚獲等相關資訊,而近紅外線 光譜 (near-infrared spectroscopy, NIR) 則可用 於辨識生鮮及解凍水產品,其優點為檢測快速 且辨識正確率高達 90% (Fasolato et al., 2012)。


本計畫利用近紅外光進行圖譜掃描,並結合一些常見品質指標,如揮發性鹽基態氮 (volatile basic nitrogen, VBN)、硫巴比妥酸價 (TBA value)、β-羥基醯輔酶 A 去氫酶活性 (β-HADH)、色差分析、鹽溶性蛋白等分析,來探討圖譜及鮮度指標之相關性及冷凍與生鮮區格。收集七星鱸、白鯧、龍虎斑、吳郭魚、赤鯮、尖吻鱸、金鯧、紅魽、烏魚、鯖魚、黃魚等 11 種魚種,將漁獲物分別於生鮮時先進行 NIR 圖譜掃描,之後隨即進行鮮度的化性分析,以探討鮮度與 NIR 光譜之相關性。另也將上述漁獲物以 -20℃冷凍儲藏一年半及半年再解凍後,進行圖譜掃描及鮮度的化性測定,以比較冷凍再解凍與生鮮樣品在 NIR 圖譜的差異。

試驗結果顯示,將 NIR 圖譜與 VBN 數值結合預測 (如表),在白鯧、金鯧、烏魚之 R^2 可以達 0.7 以上;與 TBA 數值結合預測,在白鯧、金鯧、烏魚、赤鯮、紅魽之 R^2 可以達 0.7 以上;與 β -HADH 數值結合預測,在白鯧、金鯧、尖吻鱸之 R^2 可以達 0.7 以上。透過實驗相關係數得知,VBN、TBA value 以及 β -HADH 等可呈現較準確的預測值。另,如圖所示可得知,將NIR 圖譜利用主成分分析 (PCA) 也可區分出生鮮與冷凍水產品之差異。

綜合上述實驗結果,可利用 VBN、TBA value 以及 β-HADH 等 3 種鮮度指標建立資料庫,並結合 NIR 掃描圖譜,來判定漁獲物是否經過冷凍處理,也可即時反應出鮮度數值。

漁獲物 NIR 圖譜與 VBN、TBA、β-HADH 分析與模擬方程式 R^2 值

	七星鱸	白 鯧	龍虎斑	吳郭魚
VBN R ²	0.554	0.734	0.341	0.674
TBA R ²	0.559	0.737	0.384	0.171
β-HADH R ²	0.362	0.787	0.474	0.199
	赤鯮	尖吻鱸	金 鯧	紅 魽
VBN R ²	0.169	0.722	0.833	0.310
TBA R ²	0.788	0.114	0.890	0.824
β-HADH R ²	0.192	0.754	0.755	0.238
	鳥 魚	黄 魚	鯖 魚	
VBN R ²	0.726	0.376	0.653	
TBA R ²	0.727	0.558	0.577	
β-HADH R ²	0.601	0.754	0.576	

生鮮與冷凍不同時間 PCA 分析圖