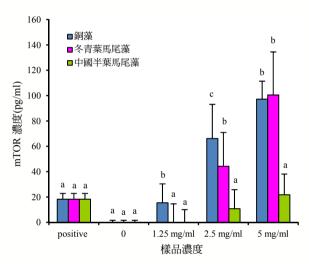
褐藻作為改善肌肉流失之營養膳食補充品研發


高淑雲、易琮凱、蔡慧君 水產加工組

隨著年齡增加,代謝減緩、食欲下降等因素,會導致肌肉流失,對老年族群有許多不良的影響,其中最重要的即為活動能力及生活品質的下降;而海藻富含營養成分,未來可望成為主要糧食來源,其蛋白質能被人體簡單吸收,且不同於陸上植物,海藻中的蛋白質具有很高的人體吸收率,效率約在70-100%之間。

2018 年計畫以富含蛋白質之褐藻-銅藻 (Sargassum horneri)、冬青葉馬尾藻 (S. ilicifolium) 與中國半葉馬尾藻 (S. hemiphyllum var. chinense) 進行水解條件探討,並建立老鼠骨骼肌細胞 (C2C12) 分化生長平台,分析生長因子 mTOR 的活化表現。結果顯示粉碎乾燥藻體以高溫高壓熱萃後,再添加醣解酵素在50℃下反應180分鐘為較適水解條件。酵素水解後之銅藻支鏈胺基酸 leucine、isoleucine、valine 濃度分別為 0.85 mg/g、0.15 mg/g、0.35 mg/g;冬青葉馬尾藻為 0.90 mg/g、0.24 mg/g、0.72 mg/g;中國半葉馬尾藻為 0.65 mg/g、0.46 mg/g、1.01 mg/g (如表)。

對細胞活存率評估,銅藻、中國半葉馬尾藻、冬青葉馬尾藻萃取物對老鼠骨骼肌細胞(C2C12)之活存率分別為82.24%、97.22%與136.60%。在細胞活性分析部分,添加5 mg/ml三種褐藻(銅藻、中國半葉馬尾藻、冬青葉馬

尾藻)水解產物對於骨骼肌細胞之生長因子 mTOR 表現量,分別為 97.20 pg/ml、21.72 pg/ml 與 100.52 pg/ml,相較於對照組皆具有增加的 趨勢,且具有劑量依賴性 (如圖)。

銅藻、冬青葉馬尾藻及中國半葉馬尾藻經熱萃+酵素水解後,其水解產物對於骨骼肌細胞(C2C12) 之 mTOR 濃度的影響 (Positive: 5 mM amino acid (Leucine: Valine: Isoleucine = 2:1:1)

以三種褐藻:銅藻、冬青葉馬尾藻與中國 半葉馬尾藻為素材,開發水解製程技術及細胞 活性評估,配合褐藻本身應用優勢開發海洋素 食性蛋白質來源,以此獲取市場青睞,讓產品 項更趨多元價值,進而帶動此項的產業發展。

三種褐藻在水萃與水萃+酵素萃取製程中支鏈胺基酸(BCAA)濃度

支鏈胺基酸 (mg/g)	中國半葉馬尾藻		冬青葉馬尾藻		銅 藻	
	水 萃	酵素水解	水 萃	酵素水解	水 萃	酵素水解
leucine	0.37	0.65	0.27	0.90	0.13	0.85
isoleucine	0.31	0.46	0.15	0.24	0.10	0.15
valine	0.81	1.01	0.39	0.72	0.25	0.35
總量	1.49	2.12	0.81	1.86	0.48	1.35