第十二章 粗首鱲

黃家富、劉富光 淡水繁養殖研究中心

一、生物學特徵

(一) 分類

粗首鱲 (Zacco pachycephalus) 俗稱溪 哥、苦槽仔、闊嘴郎(雄性),在魚類的分 類學上, 劃歸於鯉科 (Cyprinidae)、 M亞 科 (Danioninae)、鯔屬 (Zacco) (圖 12-1)。 台灣產的鱲屬魚類是中央山脈以西各河川 常見的優勢種,其屬於小型魚類,漁業經 濟較低,故目前對其鱲屬魚類研究資料很 少,主要著眼於形態形質及族群關係之探 討。依文獻資料,台灣鱲屬魚類除粗首鱲 外,還包括平頜鱲 (Z. platypus)、丹氏鱲 (Z. temmincki)、台灣鱲 (Z. taiwanensis) 及 長鰭鱲 (或名為帆鰭鱲, Z. evolans) 等五 種,其中在分類上最無爭議的是粗首鱲, 其它都曾有不同的疑慮。日人大島正滿認 為長鰭鱲即為平頜鱲的同種異名,並一直 延用至 2005 年。另曾 (1986) 則認為台灣 的丹氏鱲則為粗首鱲的誤判;陳 (1982) 以日月潭為模式地發表新種台灣鱲,但沈 等 (1993) 再將其更正為粗首鱲的同種異 名。此外,廣布於東亞的平領鱲在台灣也有 問題與爭議,直至 2005 年陳義雄與張詠青 出版之台灣淡水魚類圖鑑,將台灣產的平領 鱲復名為長鰭鱲,也就是說台灣並無平領

圖 12-1 粗首鱲(趙士龍提供)

臘,至此確定台灣僅有粗首鱲與長鰭鱲的 原生分布,是過去長期以來誤將台灣特有 的長鰭鱲視為平頜鱲。

然而,平頜鱲現身於台北縣新店溪流域,此事件則須回溯到約1984年,當時台灣河川中已無法採捕到野生的香魚,故自日本琵琶湖等地,先後引進香魚受精卵放流復育,在幾百萬顆香魚卵中夾雜著日本平頜鱲魚卵,意外的引進日本種平頜鱲魚門道,出現外來種平頜鱲的意外結果,平頜鱲憑藉體型的優勢逐漸取代生態區位接近的粗首鱲與長鰭鱲,成了優勢物種。故現今台灣河川中鱲屬魚種總歸納有粗首鱲、長鰭鱲(帆鰭鱲)與平頜鱲三種,而粗首鱲與長鰭鱲民間統稱為溪哥,平頜鱲則稱為日本溪哥。

(二) 形態

粗首鱲其體延長而側扁,腹部圓,無 肉稜。頭較大。吻略突。眼中大,上位。 口斜裂,上頜骨末端可達眼中部下方,下 領前端上翹,雌魚口裂稍大於雄魚。無 鬚。體被中大型的圓鱗, 側線完全而向下 彎曲, 側線鱗 48-55, 背鰭前鱗 24-27。各 鰭均無硬棘,背鰭軟條3(不分枝軟條)+7 (分枝軟條), 臀鰭 3 (不分枝軟條) + 9 (分 枝軟條),腹鰭1(不分枝軟條)+7(分枝軟 條)。鰭條為淺黃色,背鰭鰭膜為黑色,胸 鰭及腹鰭為橙黃色,臀鰭黃白色,成熟雄 魚的臀鰭末端游離呈條狀。體背側略灰綠 色,體側及腹側銀白色。雄魚體側的有 10 條具藍綠色光澤之橫帶,幼魚及雌魚不明 顯。繁殖期時,雄魚有明顯婚姻色且鰓蓋 及吻部出現追星。

平頜鱲與長鰭鱲的外型相似,為體延長而側扁,腹部圓,無肉稜。頭較大。吻略突。眼中大,上位。口斜裂,上頜骨末端僅達眼前緣下方。無鬚。體被中大型的圓鱗,側線完全而向下彎曲,側線鱗 43-45,背鰭前鱗 16-18。各鰭均無硬棘,背鰭軟條 3 (不分枝軟條) + 7 (分枝軟條),臀鰭 3 (不分枝軟條) + 8-9 (分枝軟條),腹鰭 1 (不分枝軟條) + 8 (分枝軟條),成熟雄魚的臀鰭末端游離呈條狀。體背側淡青褐色,體側及腹側銀白。雄魚體側具有 10 條以上藍綠色光澤之橫帶,帶間有粉紅色斑紋,幼魚及雌魚不顯。

粗首鱲、長鰭鱲與平頜鱲的外觀很相

似,但仔細比較牠們的形態仍可以發現明 確的證據可以區分:(1)側線鱗片數:粗首 **鱲:長鰭鱲與平頜鱲 = 48-55 : 42-45。**顯 示長鰭鱲與平頜鱲之鱗片較大。(2)口裂末 端與眼睛的相對位置: 粗首鱲口斜裂可達 眼睛中線的下方,而長鰭鱲與平頜鱲之口 裂未端僅達眼前緣直線下方。但三種魚種 雌魚的口裂都明顯比其雄魚來得深,以此 判斷易造成錯誤。(3)背鰭前鱗數:依陳與 方 (1999) 發表之粗首鱲的背鰭前鱗數為 24-27, 而長鰭鱲與平頜鱲為 16-18, 表示 背鰭前鱗數為明顯的不連續特徵,可作為 有效的鑑別依據。(4)成熟雄性胸鰭末端與 腹鰭起點之相對位置:平頜鱲與長鰭鱲的 主要差異為,成熟雄性長鰭鱲之胸鰭末端 明顯超過腹鰭起點,而無論任何時期的雌 雄平頜鱲之胸鰭末端均遠不及或僅達腹鰭 起點。(5)體側之藍綠色橫斑:成熟的雄性 粗首鱲與長鰭鱲之體側,有 10 條左右由體 背延伸至腹側呈藍綠色光澤的橫斑,而成 熟的雄性平頜鱲之橫斑在體側中央有融合 現象,形成一寬大的帶狀斑 (圖 12-2)。(6) 魚頰部下方的追星(圖 12-3),長鰭鱲有一 列顆粒分明的追星,而平頜鱲之頰部下方 的追星則相連為一條狀的"追星棒"。一 般來說,雖有明顯特徵可供區別,然而多 僅限於成熟雄魚,雌性則不易體會其間的 差別。(7)其它:眼部位置及大小比例及鼻 尖與眼球上方的橙彩 (圖 12-4),故在田野 調查時需於短時間判斷物種,運用眼球大 小來區分反而不容易出錯。

圖 12-2 左上為粗首鱲雄魚;右上為粗首鱲雌魚;左中為長鰭鱲雄魚;右中為長鰭鱲雌魚;左下 為平頜鱲雄魚;右下為平頜鱲雌魚

圖 12-3 粗首鱲(左);長鰭鱲(中);平頜鱲(右)等頰部的追星

圖 12-4 從左至右分別為粗首鱲、長鰭鱲、平頜鱲,上排為雄魚、下排為雌魚在每一種皆加以紅色線來標示口裂與眼睛的位置,除了讓口裂與眼睛之相對位置,有較為明顯的標示作比對,在上下對應之下,可發覺雌魚的口裂都明顯比雄魚來得深

(三) 生活史、自然生態

本屬魚為初級性淡水魚,粗首鱲原分布於台灣西部至宜蘭地區的水域中,而長鰭鱲主要分布在台北雙溪以南、苗栗縣後龍溪以北的溪流中。就生態分布,因均性喜涼溫性水域,故除最上游河段外,從河川中上游一直到受潮汐影響的河口處皆可見其蹤跡,但其中以棲息於河川中游之緩流水域最多,特別是開闊的平瀨區。除人為放流因素外,山間冷水湖泊則不易繁衍該族群。平原則棲息於各種型態水域,包括淺流、深流、瀨區、潭區及湖泊、水庫與溝渠等都可生息繁殖(圖 12-5)。

圖 12-5 溪哥喜歡棲息於水質清澈的溪流中

粗首鱲魚種生性活潑,具群集特性, 常成群游於溪流中下層水域附近覓食。幼 魚為雜食性,主要攝食石頭上附著的藻 類,成魚後偏肉食性,主要以水生昆蟲, 如蜉蝣類、搖蚊類、石蠅類或石蠶類等 (圖 12-6) 及其幼蟲或小魚及蝦等為食,也 因攝食水棲昆蟲而刮食附著於石頭上之藻類(圖 12-7),其食物相種類及比例也因地域及季節而有所不同。在長鰭鱲方面,依肉眼觀察追蹤其啄食藻類情形或少部分落水昆蟲及蜉蝣幼蟲,針對垂釣以素食性糊餌效果較佳,故食性與香魚相似,為素食主義者,並可與粗首鱲因食物取得之棲地分布而有所差異。粗首鱲喜歡出水,常在水量較豐沛之流水覓食,而水流緩流區域則多半是長鳍鱲。

溪哥一年四季都有,繁殖的季節在 3 月中旬至 10 月中旬,尤以 5-8 月為盛期;而其中粗首鱲產卵期稍提前一點,一

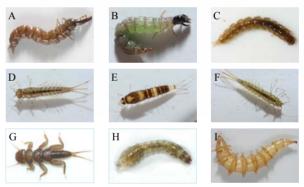


圖 12-6 溪哥常見的天然餌料-水生昆蟲 (A:長 鬚石蠶;B:流石蠶;C:隧石蠶;D-F:蜉蝣目幼蟲;G:石蠅幼蟲;H:蚋 科之幼蚊;I:大蚊幼蟲)

圖 12-7 在自然水域中長鰭鱲刮食情形

般於 3 月中旬在中下游會出現比較多抱卵的母魚,一旦出現"紅貓",則表示開始產卵交配。其產卵場一般選擇在流速較緩、砂底或砂礫底之淺瀨區域,將卵粒產於礫石中(圖 12-8)。雌雄種魚並不特別加以保護其受精卵。產卵時間通常在光線暗淡的清晨或黃昏時候。

圖 12-8 溪哥交配情形

二、養殖史

台灣溪哥的養殖與香魚的養殖密不可 分,早年香魚養殖池引河川水養殖,溪哥 魚苗隨水源進入,隨香魚飼養成長,但漁 獲量極低,直至 1986—1987年,在山產特 賣店需求量極速增加,因此,溪哥之集約 養殖也應運發展起來,並隨著生態保育與 種源放流的興起,帶動溪哥幼苗人工培育 與養殖技術。然好景不常,近年來因市場 的需求量減少,同時溪哥的成長速率緩 慢,不符合養殖經濟成本,早期專業集約 式養殖場業已不復存在,據所知現僅在宜 蘭縣冬山鄉有採混養型態方式養殖。

三、養殖現況

台灣溪哥養殖生產地區有宜蘭縣、台 北縣、桃園縣、新竹縣、苗栗縣、南投 縣、台中縣、彰化縣、花蓮縣及台東縣 等,以宜蘭縣與花蓮縣為最大宗,宜蘭縣 養殖溪哥主要分布於冬山與員山及大同等 三鄉。台灣溪哥因產量低,尚無產量與產 值等相關資料收集與彙整,而未列入漁業 署漁業統計年報中。

四、養殖環境

養殖環境的選擇,特別要考慮水溫、 水量、水質與地形的要求,此外,排水良 好、交通便利也是必備的條件。

(一) 養殖場設施及設備

台灣的溪哥養殖目前專業養殖場很少,大都多利用與鳟魚、香魚混養,多屬小型養殖模式,養殖總面積很少。無論混養或單養模式,其養殖場的設備應以水源、水質、水量、地形及水的利用方法及管理難易等因素為考量。此外各地區依季節性降雨量之不同,加以林相之變化其保水力亦異,故不宜以短期觀測結果作為投資設場之依據。

一般而言,完整的養殖場應設有稚魚 培育池、養成池與種魚池等設施,此外尚 需有管理室、飼料倉庫、緊急發電機室與 道路等,尤其道路應規畫使車輛能直接到 達池邊才能節省勞力與空間。

1. 注排水設備

養殖用水為河川水時,應有不論河水 流量增減與否都能充分取水的設施,且必 需備有沉砂池,在注入養殖池前宜先除去 砂和其他雜物。此外須以河川成直角來建 設取水壩並以直角連接引水路。若使用地 下水時,則需有自動發電機設備,以備停 電抽水用。為保證足夠的用水需求與安 全,應同時設有自流水系統、機械排灌設 備及防洪渠道。

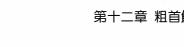
每個魚池都應設有注、排水口與排污口。根據水的流量、流速、魚池大小、魚 池形狀及注排水的要求與方法等確定注排水口大小,一般規劃排水口大於注水口。 池水由注水路直接流入池中時,宜在注水口增設散水台,使其能利用落差達充分曝氣作用。注排水口宜設置攔魚柵或網門,除防枯樹葉流入及池魚的逃逸。攔魚柵之間距可依據池魚大小而設計,須不影響水流速為原則。

2. 養殖池形狀結構

魚池之數量應具備數個,因池魚體型 隨成長會產生參差不齊,影響育成率及成 長,故需適時加以分養才能提高飼料效率 及控制養殖密度,所以魚池數多較為有 利。

一般魚池宜採用混凝土結構,有易於 清洗且能防止漏水之優點,池底應向排水 口成傾斜,傾斜度 1/50-1/20 為佳。

魚池之面積大小、水深須依使用目的 及注水量等因素而異,孵化後稚魚池約 3 -10 坪,水深 30-40 cm 左右,養成池 30 -150 坪,水深應隨池魚之成長逐漸增 加,約 1-1.5 m。同時為防止池魚跳躍逃逸,池堤離水面應有 30-40 cm 的高度。


魚池形狀有長方形、方形、圓形、八 角形及不規則形等,應配合土地條件及水 量等, 盡量提高池水之利用率、注排水便 利性與水流暢通。另外,飼養管理與撈捕 作業之便利性、造池費用等因素亦應一併 考量。一般常見魚池為長方形與八角形, 由於具有池角,如水量不足時易形成死 角,影響池水交換與沉澱物易堆積,使水 質惡化,必須隨時清除。圓形池排水口設 於魚池中央,同時藉由週邊加強注水,今 池水形成旋渦,藉水流力量使污泥、排洩 物等集中於魚池中央予以排除,提高放養 量,但圓形池造價費較高且浪費土地使用 率為其缺點。所以造池時,應設法減少靜 水面積為重點。另排水口可設集魚區,以 利採收。

魚池最好排成階梯狀且有適度的落差,使池水充分曝氣,使池水達再利用的目的。同時魚池寬度較窄時,池水流速較快,池魚不易安定,攝食情形較差,應隨池魚之成長移放較大的魚池。

為飼養與管理方便,養殖場的魚池布置是將育苗池與稚魚池設在魚場的上游地區,而養成池與種魚池則設在下游區,各池之水路應連通,使魚之分養、捕撈較便於操作,但檢疫池要單獨用水,其排出的水不能重複使用。

3. 其它設施與機具

(1)倉庫:用於保管飼料、漁具等。(2) 冷藏(凍)庫:飼料原料或鮮魚保藏用和製

冰用。(3)運輸用車輛或器具:運輸苗種與 出售漁貨用車輛。(4)其他:自動給餌機, 水車、打氣機、抽水機、網箱、分選器、 下水褲等。

(二) 水質管理

1. 水溫

溪哥為溫水性魚類,一般在水溫 10℃ 以下時幾乎不攝食,但對水溫的變化相當 適應,其最適生長溫度範圍為 20-25℃, 當水溫低於 15℃或高於 33℃時,食欲減退 或停止攝食,逐漸衰弱而死亡。因此,在 寒流低水溫期,應引用地下泉水,使水溫 上限維持在15℃以上,降低死亡。

2. 水量

水量大小對溪哥養殖格外重要。溪哥 性喜生活於水流不斷的溪流河川中,而其 生產量與用水量成正比,故需以水量多寡 來設計養殖場的面積與放養密度。

水量豐富不但可提高養殖密度,而且 水質、水溫易於控制,管理較為方便。如 果在水量較少的地方,應考慮採設置循環 過濾系統,來彌補水量的不足。台灣大多 數河川在雨季時,水量雖然充沛,但容易 導致土石流, 使水源水濁度增加, 泥土淤 積,有害物質流入而危害池魚,甚至沖毀 養殖設施。另一方面在枯水期時,水量不 足又往往威脅到池魚的生存,這些不利因 子,在設場之前都須詳加調查與防範。

3. 水質

養殖用水的水質受其地理特性控制, 此地理特性包括岩石或土壤中礦物質含 量、降雨量、水壓的變化、溫差範圍及林 木的數量等。影響溪哥生長的水質因素很 複雜,主要是:

(1) 溶氧量

溪哥喜棲高溶解氧水域。一般情況 下,溪哥的溶解氧安全臨界值為 3 mg/L, 當魚群集在入水口處呈現浮頭狀時,水中 溶解氧已降至 3 mg/L,要使溪哥處於良好 的生長狀態,溶氧最好在5 mg/L 以上。

一般水中溶氧量依水溫及濁度情形而 變化,如水源受污染及水溫升高時,其溶 氧量均會減少。如果地形有適當之傾斜度 時,可利用落差,使水充分曝氣來增加溶 氧量。此外,光照、震動等對魚體的刺激 因素,都會使池魚耗氧量增加而降低環境 的安全性。

(2) 酸鹼度

溪哥對酸鹼度的耐受範圍是 pH 5.5-9.2, 適宜範圍為 pH 7.0-8.0 之間, 酸性 環境對溪哥會產生抑制生長的致害作用。

(3) 濁度

水質的混濁度也是影響溪哥生長與活 存的重要因素。混濁的水質會妨礙魚的視 力,而影響攝食和生長。當濁度過高時亦 影響魚體呼吸而致死。

河川水質之優略可由原先是否有魚族 棲息作為判斷之參考。另外,河水水源量 之多寡亦可依水草繁生與否作判斷,在水 量多而急的地方則不易長水草,而以苔藻 為主。然在人工飼養環境下,適度的水色 可增加溪哥在池中的安定性,亦可提供天 然餌料,促進其生長。故要符合養殖用水 水質指標,一般都可用於溪哥養殖。

4. 地形與土質

養殖場地必須有適度的傾斜度,對注水、排水及清池等作業較為便利,但傾斜度過急,車輛無法到達池邊,影響池魚與飼料等搬運,也易發生洪水,應予避開。魚場或水源上游不宜有人為強度活動,如畜牧業、避暑遊業、伐木或採礦等,其往往增加水源沖蝕及有機與無機物污染機會,甚至改變水流量、水溫及水土保持,不利於養殖。此外亦須注意養殖場之土壤不宜鬆軟且不含銅、鉛、硫磺等有害物質。

因此設置養殖場時,應對水源的環境情況進行全面的瞭解。理想的養殖環境須參酌下列因素:(1)適當的雨量、充足的水量;(2)穩定及適宜的溫度;(3)優質的水質;(4)地形坡度適中;(5)水源等不受人為活動之影響;(6)土面具有良好覆蓋物,如樹叢或草木,不受土石流影響區域。

五、種苗生產

(一) 親魚選育

1. 種魚來源與選擇

種魚可自台灣西部河川中下游水流較緩流區域或水庫中釣捕,取其健康、活力佳、體質健壯、無病、無傷、無畸形者,放入種魚池蓄養或自行育種、成長良好之成魚作為種魚,但近親繁殖的後代不得作為親魚。溪哥的性成熟年齡:雌性為2年齡以上,雄性為1年齡以上。雌雄種魚於5年齡以上即會有陸續老死的情形。

2. 種魚培育

種魚的培育需經特別的選種與飼養管 理,選種主要在於篩選。

(1) 種魚的選擇

種魚的培育工作一般有二種:一是從幼魚階段開始,將親魚培育與選育相結合,通過不斷的選育,獲得品質優良的親魚。另一是在種魚產卵前1-2個月進行,選擇體型健碩、成長良好的成魚作為種魚。

(2) 飼養管理

魚池可使用以長方形水泥池為宜,長 寬比為 8-10:1,面積 100-600 m^2 ,水 深 1.0-1.5 m。魚池池底宜鋪上一層細砂 和一些碎石,注排水方便。

培育水溫宜在 18-25°C間。溶氧量應保持在 4 ppm以上。放養量以 5-10 kg/m³為原則。雌雄可以混養,雌雄比 2 : 1,但產卵前 1 個月雌雄種魚應分池飼養。

因目前尚無專門飼養溪哥用飼料,為提高魚卵質量,飼料建議採用香魚配合飼料投餵,培育時應注意在飼料中加入適量的維生素 A、B 群與 E。

日投飼率在產卵期間為親魚體重的 3%,在產卵前1個月和產卵後1個月為親 魚體重的5%,每日投餵兩次。

在日常管理方面,須即時清除殘餌糞便,保持魚池清潔,發現病魚即時治療, 死魚應即時撈出並深埋處理。

(二) 自然繁殖

Wang et al. (1995) 指出,台灣自然水域中之粗首鱲有二個主要的生殖季,主要

配合台灣河川水量之變化,分別為春季(2 -4 月)及夏季(6-8 月),而以 4 月的 GSI (生殖腺指數) 最高,同時於 4、10 月 幼苗採捕量為最高。另 Katano (1990) 指 出 5-8 月可發現成熟的丹氏鱲 (Z. temmincki) 雌種魚,但 GSI 與肥滿度 (CF) 大都在 7、8 月為高峰。水試所竹北試驗場以半硬池飼養種魚,結果發現其 GSI 於 1 月為最低,3 月起即開始發育,7 月達最高,而 GSI 變化可能因缺乏水量、水流等變動因素影響,而出現以夏季為主要產卵季節,與自然界二個生殖季不相同。

Katano and Maekawa (1995) 曾指出, 丹氏鱲於實驗室內試驗期間每次的產卵量 不定,每天可獲得 0-702 粒卵,顯示每次 自然產卵量不多,其生殖行為屬多次產卵 型魚種。丹氏鱲與粗首鱲屬於同一屬,且 丹氏鱲曾被認為與粗首鱲是同種異名。由 粗首鱲卵巢組織切片顯示 (圖 12-9),在各 時期之卵巢組織均可觀察到卵母細胞期至 各卵黃期的卵細胞,且在試驗之種魚產卵 具有週期性,更可加以證實粗首鱲生殖行 為屬多次產卵型。而 Burt et al. (1988) 曾 報告指出,多次產卵性魚類的特性為體型 較小、生殖季長、孕卵數有隨年齡增長而 增加,溪哥也都有此特徵表現。

水試所竹北試驗場為促使溪哥能夠自 然產卵,在種魚池池底宜鋪上一層細砂和 一些碎石,設置類似自然生態環境中的自 然產卵床,水深 20-30 cm,並採取緩慢 流水形式養殖。另由於春夏期間產卵之魚 種,通常使用長日照時間 (14-18 小時) 處理,可促進種魚成熟、縮短產卵時間, 故增加光照時間。試驗結果,平均隔 14 天 可看見一批魚苗產生。

圖 12-9 溪哥牛殖腺組織切片

然在種魚培育池中自然產卵孵化之仔 魚,若無躲避處時,極可能遭受種魚攻 擊,成為種魚之餌料,因此如何改善養殖 環境,如做水色增加池中藻相與天然餌 料,減少殘食或增設水生植物,以利躲 藏,增加幼苗生存率,才能增加池中自然 生產。

但從事種苗生產,雖可利用其產卵習性,使種魚自然而長期不斷的生產,惟此 法非短期間可成功掌握,且無法同時大量 獲得相同體型之魚苗,無法供應市場所 需,因此需借助人工繁殖方法來解決問 題。

(三) 人工繁殖

1. 種魚成熟度鑒別

成熟的雌魚體色變黑、腹部大而柔軟,生殖孔紅腫外凸,輕壓腹部即有卵粒外流,成熟的雄魚體表黏液減少,會出現婚姻色與追星等顯著的第二性徵,其追星分布於吻部、上顎、頰部、下顎、前鰓蓋

骨、主鰓蓋骨、臀鰭鰭條基部的鱗片上, 而由吻端至頭部下面、體腹部及胸鰭、腹 鰭、臀鰭則呈明顯的赤褐色或緋黃色之婚 姻色,輕壓腹部即有白色精液流出。

種魚群必須密切觀察,因其產卵期相 當漫長,且個體成熟度不一,能夠一次全 部採卵的機率甚低,更由於良好的種魚與 適宜的成熟度乃種苗生產之關鍵,故雌種 魚在繁殖季節每隔 5-8 天即需檢查其成熟 度情形,然此間隔的長短,依水溫、季節 及各育苗場的狀況而有差異。

由於上述因素,業者均會以激素處理促進雌種魚排卵,其方法為將選出的親魚分別以人類絨毛膜促性腺激素 (hCG) 行腹腔注射,注射量每尾約 100-200 IU,24 小時後檢查有無排卵,一般在 72 小時內,經催熟處理之種魚均可進行採卵受精。

2. 準備工作

在採卵前,首先對孵化池徹底清洗與 消毒,仔細檢查供水與過濾系統。

3. 人工採卵、授精

人工培育之種魚於種魚池中自然產卵 機率較低,都採用人工授精方法採精和採 卵。通常將種魚先麻醉,避免在採卵過程 中種魚之掙扎,以減少破卵及傷害魚體的 危險。操作時通常二人一組,先擦乾魚體 和器皿,一人以雙手托著胸鰭並將頭部提 起,使魚體傾斜 40 度,另一人握著尾柄, 令生殖孔對準採卵盆,並在魚的腹部由頭 部向尾部輕輕擠壓,將卵擠到乾淨的盆 中,要防止水及排泄物的混入,其後即刻 進行授精。 授精方法一般採用乾導法授精,直接 將雄魚精液直接擠入卵盆中,以鴨羽毛攪 拌使精卵充分混合,再加入少量等張溶 液,繼續攪拌1分鐘,然後清水沖洗1-2 次,洗去破卵和多餘的精液,將卵置於孵 化槽中孵化。

溪哥受精卵稍具黏性,此黏性並非任何黏性物質引起,主因是卵的外膜是多孔的,在吸水膨脹的過程中自然具有黏性,但在膨脹完成後,此黏性自然消失,若振動水流會使附著脫落,隨水流滾動,因此,在孵化槽底部宜鋪上一層小砂礫。受精卵必須儘快灑布鋪平在孵化槽,且不可重疊,密度亦不可過高。

4. 孵化

水試所竹北試驗場曾以林氏吊網流水 式、平舖靜置打氣法及蝦母袋氧氣封袋靜 置法等方式進行種苗孵化方式的比較試驗 (未發表),試驗結果如表 12-1 所示,其中 以林氏吊網流水式方式最差,受精卵完全

表 12-1 孵化方式比較試驗

孵 化 方 式	平均孵化率(%)	備註
林氏吊網流水式	0	
	0	
	0	
水泥池底平舖靜置打氣法	15.50	受蠕蟲感 染
	0	
	47.50	
蝦母袋氧氣封 袋靜置法	0	水質不良 所造成
	41.47	
	83.25	

死亡,水泥池平舗靜置打氣法之受精卵極 易受蠕蟲之感染,封袋靜置法獲得最佳孵 化率,然該法於幼苗孵化前必須更換水, 以防水質惡化造成魚苗大量死亡。經試驗 後發現,卵受精後 50 小時應更換水,並添 加 0.1 ppm 的甲烯藍,再重新充純氧氣封 袋,則可維持到魚苗開始自由游動。

(四) 胚胎發育

溪哥適正成熟卵呈橘黃色、圓形,具微 黏著性, 卵徑大小為 1.50-1.65 mm, 卵重 約為 0.98-1.04 mg, 其受精後卵吸水膨脹, 使受精卵極易隨水流而脫落,吸水後受精卵 徑為 1.87-2.25 mm, 平均卵徑為 1.96 mm, 卵黃徑平均為 1.41 mm。在水溫 23-25℃ 下,受精卵經 53-58 小時即可孵化。卵胚 胎發育如表 12-2 與圖 12-10 所示。成熟卵受 精後 25 分鐘即胚盤突起見到 polor cap 之形 成,40 分鐘後分裂為 2 細胞,55 分鐘後分 裂為 4 細胞,受精後 3 小時 40 分鐘進入桑 椹期,受精後 14 小時 50 分鐘囊胚將卵黃完 全覆蓋,形成胚孔封閉,胚體形成。18 小時 20 分鐘後胚體中央出現 4 節體節,22 小時 10 分鐘眼囊形成, 28 小時 15 分鐘尾部的邊 緣有透明膜狀鰭褶,尾鰭出現。受精後 31 小時 20 分鐘胚體開始蠕動,其後蠕動逐漸 增強,於受精後53小時20分鐘第1尾幼苗 掙破卵膜孵化,剛孵化之魚苗體長約 4.8-5.2 mm, 卵黃囊成葫蘆狀。於受精後 58 小 時則完全孵化。

(五) 魚苗的蓄養與培育

1. 仔魚的蓄養

幼苗體質嫩弱,體色很淡幾近透明,

具有卵黃囊,伏臥於孵化槽底,靠吸收卵 黃囊的營養繼續發育,孵化後第 3 天發現 部分具游動能力 (體長約 6.2-6.4 mm), 但消化系統尚未完全分化,直至平均體長 7.1 mm 以上時 (孵化後約 7-8 天),才發 現開始攝食現象 (圖 12-11)。此時應調整 水流速度,以不擾動仔魚為原則。

表 12-2 溪哥受精卵胚胎發育情形 (水溫 23 -25°C)(黃,2003)

胚 胎 發 育 階 段	受精後時間
受精卵(fertilized egg)	0 時
胚盤突起 (enlargement of blastoderm)	0時25分
2 細胞期(2 cells stage)	0 時 40 分
4 細胞期(4 cells stage)	0 時 55 分
8 細胞期(8 cells stage)	1時10分
16 細胞期(16 cells stage)	1時45分
桑椹期(morula stage)	3 時 40 分
囊胚中期(middle blastula stage)	5 時 25 分
囊胚後期(late blastula stage)	6時30分
原腸中期(middle gastrula stage)	9時40分
原腸後期(late gastrula stage)	11 時 15 分
胚孔封閉期 (blastopore closes)	14 時 50 分
體節出現期 (myotomes appear stage)	18時20分
眼囊出現期(lens of optic vesicle formation stage)	22 時 10 分
尾鰭出現期(tail-fin appear stage)	28 時 15 分
肌肉效應期(motility stage)	31 時 20 分
孵化(hatching)	53 時 20 分 -58 時

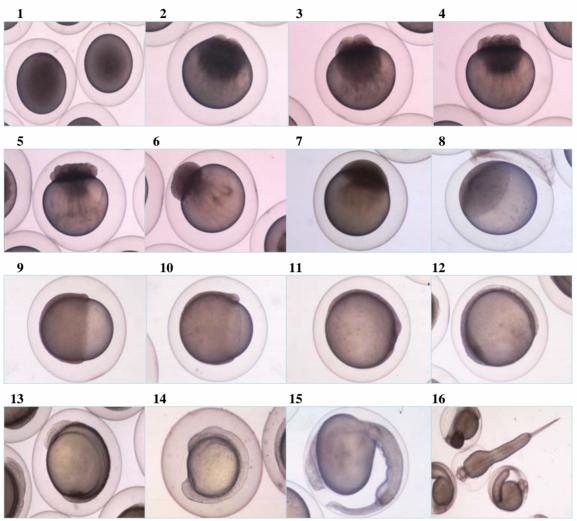


圖 12-10 溪哥胚胎發育(1:受精卵;2:二細胞期;3:四細胞期;4:八細胞期;5:十六細胞期;6:桑椹期;7:囊胚中期;8:囊胚後期;9:原腸中期;10:原腸後期;11:胚 孔封閉期;12:體節出現期;13:眼囊出現期;14:尾期出現期;15:肌肉效應期;18:孵化)(黃,2003)

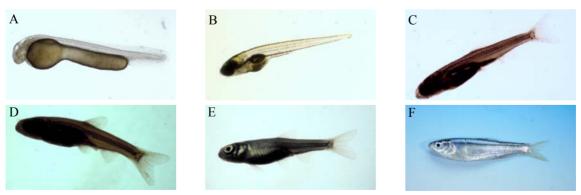


圖 12-11 溪哥魚苗發育(A:剛孵化之仔稚魚,體長 4.8-5.2 mm; B:孵化後 7 日之仔稚魚,體長 7.0-7.2 mm; C:孵化後 21 日之仔稚魚,體長 9.7-10.1 mm; D:孵化後 56 日之仔稚魚,體長 18.5-19.5 mm; E:孵化後 63 日之仔稚魚,體長 25.6-27.4 mm; F 孵化後 75 日之仔稚魚,體長 40-42 mm

2. 仔稚魚的培育管理

(1) 培育池與水體條件

魚苗培育池以長方形水泥池為佳,一般培育池面積 10-60 m²,長為寬的 2-6 倍。入水形式採取並聯排列進水,池水深度 20-30 cm。從進水口到排水口有 5-6%的傾斜度,便於集污和排污。池中宜裝置增養系統。

使用前對培育池作徹底清洗,並用 20 mg/L 漂白粉或 200 mg/L 生石灰消毒。進排水口設置閘網罩,防止有害生物進入和魚苗逃逸,排水口最好寬一些,用適當的絲網製防逃閘門。要注意供水量和水流速。

(2) 飼料投餵

仔稚魚於孵化後約 7-8 天,體長達 7.1 mm 以上時才發現開始攝食,此時口徑 為 320-350 μm。由於市場中並無專為溪 哥魚苗培育而開發的完全配合飼料,因此,仔稚魚之培育方法與鯉科魚類的仔稚魚方式相似,初期餌料以蛋黃、藻水混合 淡水輪蟲或小型水蚤、草履蟲等。

育苗池在未移入魚苗前,須先注入綠藻水,水深 30-40 cm,再將魚苗移入,隨後投餵淡水輪蟲或小型水蚤、草履蟲及蛋黃。當魚苗體長達 1.5 cm 以上時,開始投餵燒腳類或豐年蝦無節幼蟲。另於孵化後 7 天起,可投飼幼蝦用微粒飼料或香魚幼苗專用配合飼料,視魚苗成長情形,以適當顆粒飼料配合動物性浮游生物混合投餵飼養。於孵化後 2 個月,魚苗成長約為 3 cm 後,可全部採用完全配合飼料其營養苗的飼料。苗種用的完全配合飼料其營養

成分為粗蛋白 40-55%,粗脂肪 3-5%,粗纖維 1-3%。日投餵人工配合飼料量為 魚體重量的 5%左右。

(3) 日常管理

日常管理要嚴防逃魚,並勤刷閘門及 撿除雜物,稚魚池內之排泄物及殘餌等廢 棄物,應經常用虹吸管原理將其吸除,以 防水質敗壞。

因仔稚魚成長體型大小不一,故於體 長約2 cm 時,可利用弱光集魚方式,以虹 吸方法施行篩選分養作業,以降低飼養密 度,減低因體型差異引發殘食機率,使其 均衡成長、提高育成率。一般體長達 3.5 – 4.0 cm 左右,即可放養於養成池。

六、養成與管理

(一)養成池設備

養殖池的設備應以水量、地形及管理 方法為考量,理想的養成池需具有能調節 水位至適當深度及保持池水流動的設計。 目前實用的魚池設計需有預防疾病、自動 選別裝置、機械化投餌設備與全場操作的 省力設計。

養成池最好排呈階梯式,讓池水在流到下段池前,經過充分曝氣,讓池水溶氧量獲得補充,達到再利用的目的。池水交換率應在每小時2次以上,流水速度有每秒30 cm 時最佳。最適水溫20-25℃,最高水溫不得超過34℃。

(二)養殖管理

1. 放養前之準備

養殖池在魚苗放養前需先以 35 ppm 濃度之福馬林或 100 ppm 濃度之漂白劑消毒,以除病源,同時檢視排水口有無漏水,另亦需注意注水道有無防止雜物或雜魚混入之防備設施。亦可在放苗前 15 天左右預先注水,使池壁長滿矽藻再放苗。

2. 養殖池放養量

影響放養量的基本因素有:(1)水質;(2)水溫;(3)水量;(4)流速;(5)池水交換率;(6)水污染;(7)池魚體型;(8)選別及間捕的頻度;(9)疾病發生情形等。因此,放養密度各漁場均迥異,各漁場決定最適放養量之方法,是檢查數個成長季的生產情形,正確的記錄池中魚數、魚重、成長、換肉率、飼料種類、發病情形及死亡率等,再以之參照基本因素,如水溫、水量等來衡量與決定。一般放養密度為 150 尾/m³左右。

3. 飼養管理

一般溪哥魚苗放養體型為體長 3-4 cm 左右,在正常情況放養後約 6-8 個月 後,便可陸續間捕出售。在飼育管理上更 應注意下列幾點:

(1) 投餌方法

魚苗放養初期,因尚未習慣養成環境,投餌應少量多次,盡量減少殘餌,以免水質惡化,經3-4天馴餌,魚苗已習慣培養環境和人工飼料,且會集中定點攝餌,此時可按平常飼育方式投餌,通常每日投餌料分2-4次投餵。

(2) 投餵量

每日投餵量需視魚體大小、生長階

段、水溫高低及飼養數量等因素而定,並 以魚飽食量的 80%的投餵量為原則。

(3) 飼料

粗首鱲與長鰭鱲食性雖都同屬雜食性,但粗首鱲偏掠食水中或水面昆蟲及幼蟲,而長鰭鱲則偏攝食藻類,但於集約養殖池或與香魚等混養池中,並無足夠的天然食物,必須仰賴飼養者所投給之餌料為食。有關鱲屬魚類的營養需求研究完全缺闕,故尚未有完全配合飼料開發,目前均以市售香魚、鱒魚配合飼料、吳郭魚飼料、蝦類飼料或自行以魚漿、鰻魚飼料、魚粉、黃豆粉、綠藻粉及綜合維他命等配製。

現今商業化微生物製劑產品已逐漸成 形,以有不少業者使用,以增加魚體免疫 力、提升飼料效益,降低環境污染等,也 略見成效。

(4) 飼料保存

飼料在儲藏與配置不當的情況下,也 會喪失其價值。各飼料廠生產之飼料均有 一定的有效期,儲存期不應超過 60 天,各 養殖場在購買飼料時都不需多購,並爭取 在有效期間內用完。購入之飼料應儲存於 乾燥、通風和避光之處,並應定期清掃, 更應預防鼠害,注意環境衛生。

4. 水質管理

(1)要保持水流的恆定與通暢,水的流量要大一些,但水的流速不能突破加大。如有無法抗拒之原因而停水或減少水量時,應及時採取增氧或其它措施,以維持水體的溶氧量。(2)在養殖過程中對水域的

水質應定期檢查,並將各項檢測結果予以 記錄。水中溶解氧應保持在 5 mg/L 以上。

5. 日常管理

(1)日常管理要嚴防逃魚,並勤刷閘門 及撿除雜物,養殖池由於殘餌與排泄物等 累積,需每天定時清污。圓形養殖池水流 強,池底污物會自動排出,長方型池因有 水流死角,易堆積殘餌與排泄物,使水質 惡化,發生魚病,應隨時注意以虹吸方式 吸除,確保環境衛生。(2)應時常注意池水 的注排水現況,魚的游泳狀況,攝餌情形 與攝餌量,若發現池魚有任何異狀,應馬 上處理,對於魚病應作到 "早期預防,早 期發現,早期治療"。(3)魚苗放養 2-3 天後開始投餵,投餵應在上水頭進行,且 應防飽食或過量。(4)於魚池上架設防鳥 網,以防止鳥害及病害之傳播。(5)記錄養 殖過程,建立養殖日誌。

(三) 收成

目前台灣溪魚消費型態有二:一為活 魚狀態,以活魚運輸車運往市場,其價格 較高,二為冷凍冰鎮方式,此種運輸較為 方便。出貨給中盤商,做為河川放流用, 或直接銷售餐館、山產店或傳統市場。

溪哥商品出售前應予蓄養 1-2 天,以 消除消化道內容物,減少運輸途中排泄污 染水質,減少損失。

1. 活魚運輸

活魚運輸使用之冰塊需符合衛生署公告之"冰類衛生標準"之規定,所用的水則應符合環保署公告之「地面水體分類及水質標準」陸域乙類水體之水質標準的規

定。

少量活魚運輸可以雙層塑膠袋裝水灌 純氧氣密封,量多可用運輸車打氧氣,但 運輸途中為避免水溫上升減少魚的死亡, 應加冰塊以降低水溫。活魚運輸車水箱宜 先清整、消毒,降低細菌、寄生蟲等之傳 播。

2. 冷凍冰鎮與包裝

在碎冰水中加入食鹽 (粗鹽),令魚體 溫降至-3℃,連冰裝入包裝盒中密封,外 側再以防水紙箱捆包後,交盤商銷售。

七、疾病與對策

疾病的發生是由病原體、水環境及魚體本身共同作用而引起的。因此唯有貫徹 "預防為主、有病早治、防治並重"的措施,才能達到預期的養殖成果。魚出現活力減弱、離群獨游、攝食量降低或停止進食,體色變黑、發白、體表有出血等症狀時,往往是疾病潛伏的外在表現,此時請向防疫單位尋求協助處理。

溪哥養殖生產中常見的敵害,如昆蟲、鳥類、兩棲類、爬蟲類及哺乳類等, 而溪哥養殖也與一般淡水魚養殖相同,常 見的疾病包括寄生蟲性疾病、細菌性疾病 及營養不良等。

(一) 細菌性疾病

細菌性疾病的案例,如由 Cytophaga spp. 感染引起,在體表、頭部、鰓部及鰭條出現灰白色斑塊,而向四周蔓延潰爛之柱狀病,由黏液細菌 (Myxobacteria spp.)

感染之細菌性鰓病(Bacterial gill disease),由 Flaxibacter spp. 感染引發之鰓腐病或爛口症,受弧菌(Vibrio anguillarum)感染引發體表的出血及潰瘍、眼球白濁或出血,脾、腎臟腫大等病兆之弧菌病(Vibriosis),由病原菌 Aeromonas salmonicida 引起體表出現紅色腫脹疙瘩病變,Aeromonas spp. 引起之立鱗病,以及由 Columnaris spp. 引起的穿孔症等。

(二) 寄生蟲性疾病

常見的外部寄生蟲性疾病,如白點蟲 病、車輪蟲病、魚虱病、卵圓鞭毛蟲病、 異型吸蟲病等,而常見的內部寄生蟲性疾 病有黏孢子蟲病、黃吸蟲病。

1. 白點蟲病

屬纖毛蟲類的白點蟲(Ichthyophthirius multifiliis),幾乎能感染所有淡水魚類,經常造成仔稚魚和幼魚的大量死亡。在水溫高及池魚密集,均可導致白點蟲病的爆發。病魚體表明顯出現許多小白點,鰓上分泌大量黏液,病魚呈現不安狀態,常側身在池壁摩擦身體,企圖擦掉病原體,使體表變白濁,並引起水黴菌或細菌之二度感染,4-5日後,病魚即死亡。

2. 魚虱病

受魚虱蟲體 (Gasilus spp.) 感染,在病魚之體表、鰓部及各鰭條基部均可發現。魚虱蟲體以口器刺傷魚體、吸食體液,造成機械性傷口,使病原菌或真菌類的二度感染,而加速病魚之死亡。

3. 車輪蟲病

在淡水魚塭較易發生,感染車輪蟲

(Trichodina spp.) (圖 12-12) 的病魚會有磨擦身體的行為,體表部分變白,易引發水黴菌感染,魚體消瘦發黑,游動緩慢,呼吸困難。如果懷疑時,可從鰓部或皮膚部位採粘液做抹片、鏡檢得知。

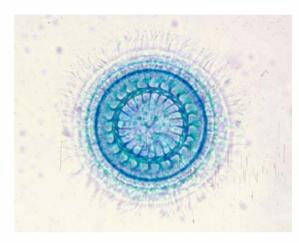


圖 12-12 車輪蟲

4. 黄吸蟲病

黃吸蟲病(圖 12-13)的病原體是一種身體扁平、不分體節的蠕蟲類,屬於扁形動物門,吸蟲綱。一般被寄生者於體表會出現小如針頭,大到 2.5 mm 乳白色胞囊,形狀以卵圓形居多,胞囊發生部位包括驅幹、頭部及鰭條等處,其數量無定數,少者數個,多者百餘個。將胞囊剖開,會發現捲曲在內的寄生蟲。感染的病魚會有磨擦身體的行為,游動緩慢,常成為鳥類所攝食。

圖 12-13 粗首鱲感染黃吸蟲病

(三) 敵害

1. 昆蟲

常見魚池中的水生昆蟲,如龍虱(Cybister chinensis)及其幼蟲-水蜈蚣、蜻蛉目幼蟲-水蠆等(圖 12-14、12-15、12-16、12-17),在魚苗培育過程,對魚苗的危害很大。

圖 12-14 粗鉤春蜓水蠆

圖 12-15 水蠆

圖 12-16 蜻蛉目春蜓科幼蟲-水蠆

圖 12-17 水蜈蚣

2. 鳥類

鳥類如夜鷺、白鷺鷥(圖 12-18)、翠鳥(魚狗)等,能適應於水濱生活,不但

獵捕魚類為食,而且還成為魚類寄生蟲的 宿主,傳播病原體造成疾病的流行。故養 殖場魚池需架設防鳥網,以防鳥害。

圖 12-18 大白鷺鷥(左)、夜鷺(右)

3. 爬蟲類及兩棲類

兩棲類的蛙類,如蟾蜍等之幼體蝌蚪,在無足夠食物情形下,則會攻擊魚類 魚苗。爬蟲類的鱉及蛇類(如白腹游蛇), 常會捕食小魚或成魚。

參考文獻

呂明毅 (1996) 平額鱲的飼育與繁殖。國立海 洋生物博物館籌備處技術叢書 8,61 pp。

沈世傑、李信徹、邵廣昭、莫顯蕎、陳春暉、陳哲聰 (1993) 台灣魚類誌。國立台灣大學動物學系印行,960 pp。

林金榮、張仁謀、劉繼源、芳玉昆、陳其 林、莊成意、涂嘉猷 (1988) 鮭形石斑繁 殖及其育苗試驗。台灣省水產試驗所試驗報 告,45:1-16。

林春吉 (2007) 台灣淡水魚蝦生態圖鑑(上)。 天下遠見出版股份有限公司印行,148-151。

- 張文重 (2008) 溪哥仔魚種苗培育技術。養 魚世界,354:8-11。
- 陳義雄、方力行(1999) 台灣淡水及河口魚類誌。國立海洋生物博物館籌備處, 94-95。
- 陳義雄、張詠青 (2005) 台灣淡水魚類原色 圖鑑。水產出版社出版,14-37。
- 曾晴賢 (1986) 台灣的淡水魚類。台灣省教育廳出版,183 pp。
- 黄家富、彭弘光、劉富光 (2003) 溪哥魚 (Zacco spp) 的人工繁殖試驗研究(I)。九十一年度水產試驗所試驗研究工作報告,735-745。
- 廖德裕、林弘都、王豐寓、曾晴賢 (2007) 台灣產鱲屬魚類的簡易區分法。自然保育季 刊,57:33-36。
- Katano O. and K. Maekawa (1995) Individual differences in egg cannibalism in female DarkChub (Pisces: Cyprinidae). Behaviour, 132(3-4): 237-253.
- Katano O., S. I. Abe, K. Matsuzaki and K. Iguchi (2000) Interspecific interactions between ayu, Plecoglossus altivelis, and pale chub, *Zacco platypus*, in artificial streams. Fisheries Science, 66: 452-459.
- Katano, O. (1990) Seasonal, sexual and individual variations in gonad weight and secondary sexual character of the dark chub, *Zacco temmincki*. Japanese Journal of Ichthyology, 37(3): 246-255 °
- Wang J. T., M. C. Liu and L. S. Fang (1995)

 The reproductive biology of an endemic

cyprinid, *Zacco pachycephalus*, in Taiwan. Environmental Biology of Fishes, 43: 135-143.