The Complete Mitochondrial DNA Sequence of the Deepwater Stingray Plesiobatis daviesi（Wallace，1967）： Unique Features in the Mitochondrial D－loop Region

Sheng－Tai Hsiao ${ }^{1}$ ，Chi－Hsin Hsu^{2} ，Don－Chung Liu ${ }^{3}$ and I－Shiung Chen ${ }^{4 *}$
${ }^{1}$ Marine Fisheries Division，Fisheries Research Institute
${ }^{2}$ Institute of Marine Resources，National Sun Yat－sen University
${ }^{3}$ Fisheries Research Institute
${ }^{4}$ Institute of Marine Biology，National Taiwan Ocean University

Abstract

The 17514－nucleotide mitochondrial DNA（mtDNA）sequence of the deepwater stingray （Plesiobatis daviesi）was determined using long PCR and primer walking methods．The deepwater stingray genome contains 37 genes，including 2 ribosomal RNAs， 22 transfer RNAs（tRNAs），and 13 protein－coding genes，which are similar to other vertebrates．A comparison of the deepwater stingray $m t D N A$ sequence with that of seven completely sequenced chondrichthyan mtDNAs revealed an identical gene order．However，the major noncoding region of the deepwater stingray genome，a D－loop sequence between the $t^{2 N A} A^{\text {Pro }}$ and $t R N A^{\text {Phe }}$ ，is the longest（ 1830 bp ）among all known available sequences of chondrichthyan species．The components of D－loop sequences are two major copies of $47-\mathrm{bp}$ tandem repeats and two characteristic conserved sequence blocks in this region． Phylogenetic analyses suggest that the deepwater stingray belongs to the basal group of Myliobatoidei that forms a sister group with Hexatrygonidae．

Key words：mitochondrial genome，Long PCR，deepwater stingray，Plesiobatis daviesi

INTRODUCTION

Mitochondrial genomic sequences have been used as genetic markers for molecular approaches in the phylogenetic and evolutionary studies of fish （Miya et al．，2001）．

The order Myliobatiformes is a monophyletic group comprised of stingrays，round rays，butterfly rays，and eagle rays．The family Plesiobatidae belongs to the order Myliobatiformes and includes only one monotypic species，Plesiobatis daviesi，which

[^0]was formerly recognized as Urotrygon daviesi and was placed under the family Urolophidae．Several different hypotheses have been proposed regarding the classification of Plesiobatidae（Fig．1）．The family was first established by Nishida（1990）based on several unique feature（i．e．nasal curtain being incompletely united and not reaching the mouth，with large size and soft disc，the average total length was $\sim 200 \mathrm{~cm}$ and the average disc width $\sim 100 \mathrm{~cm}$ ）．Later，McEachran et al．（1996）described musculature and skeletal structure of batoid fishes and provided a new topology on the relationship of myliobatoids．Based on the study by McEachran and Aschliman（2004） on the diversity of claspers in batoids，P ．daviesi was placed under the family Urolophidae．However， recently Nelson（2006）placed Plesiobatis under the

Fig. 1 The four most relevant hypotheses of phylogenetic relationship of myliobatoidei families. (A) Nishida's (1990) hypothesis based on morphological characters; (B) McEachran et al. (1996) proposed; (C) Phylogenetic relationship of myliobatoidei families, based on claspers characters, proposed by McEachran \& Aschliman (2004); (D) The most recent hypothesis was made by Nelson (2006).
family Plesiobatidae. Plesiobatis is considered a primitive chondrichthyan. Therefore, in order to understand these taxa in terms of the evolutionary process among the myliobatoids, analysis of the complete mitochondrial genome sequence of the deepwater stingray would be beneficial.

Among chondrichthyans, complete mitochondrial DNA (mtDNA) sequences have been reported for only seven species: the small-spotted catshark Scyliorhinus canicula (Delarbre et al., 1998), the starspotted smooth-hound Mustelus manazo (Cao et al., 1998), the horn shark Heterodontus francisci (Arnason et al., 2001), the spiny dogfish Squalus acanthias (Rasmussen and Arnason, 1999a), the thorny skate Raja radiata (Rasmussen and Arnason, 1999b), the ocellate spot skate Raja porosa (Kim et al., 2005), and the rabbitfish Chimaera monstrosa (Arnason et al., 2001). In contrast, there are no published mtDNA sequences on Myliobatiformes.

This study is to determine the complete mtDNA
sequence of the deepwater stingray P. daviesi (Elasmobranchii: Myliobatiformes: Plesiobatidae) was determined using long polymerase chain reaction (PCR) and primer walking methods, which have been previously applied for teleost fish (Miya and Nishida, 1999; Miya and Nishida, 2000; Inoue et al., 2000, 2001a, b, c; Kawaguchi et al., 2001; Miya et al., 2001). This is the first study to construct the complete mtDNA sequences of myliobatoid fish may provide an independent assessment of lineage evolution within Myliobatiformes to reconcile previous conflicting hypotheses of evolutionary relationships.

MATERIALS AND METHODS

1. Fish sample and DNA extraction

A deepwater stingray was captured in 2001 from Tungkang in southern Taiwan by bottom trawling at approximately 300 meters deep. Total

Fig. 2 Gene organization and sequencing strategy for the Plesiobatis daviesi mitochondrial genome. The circular genome is represented linearly.

DNA extraction was performed using the protocols of the High Pure PCR Template Preparation Kit (Roche Diagnostics, Indianapolis, Ind.). The voucher specimen was deposited in the collection of the National Museum of Marine Biology \& Aquarium, Pingtung, Taiwan.

2. mtDNA amplification by long PCR

The complete mitochondrial genome of the deepwater stingray was amplified using a long PCR technique (Miya and Nishida, 1999, 2000). Two sets of primer pairs (first set, LA-C16SF1: GCCAACCC ACCTCTGTAGCAAAAGAGAGGGAAGACTCC; LA-CGLUR1: GCTAGGGCTAGTAATTTCTGCT GGGGTGGGTTGTGGTT; and second set, LACLEUF1: TTTCTCCCGCCCATGGTTCGAATCCC TGGCTCCCTTA; LA-C12SR1: CTCGTATAACC GCGGTGGCTGGCACGAGATTGACCAAC) were used to amplify the complete mitochondrial genome in two long PCR reactions.

Long PCR was performed in a Model 2400 or 9700 thermal cycler (Perkin-Elmer, Foster City, CA, USA), and reactions were performed with 30 cycles and a $25-\mu \mathrm{L}$ reaction volume containing $15.25 \mu \mathrm{~L}$ of sterile distilled water, $2.5 \mu \mathrm{~L}$ of $10 \times$ LA PCR buffer II (Takara, Shiga, Japan), $4.0 \mu \mathrm{~L}$ of dNTPs (0.25 mM each), $1.0 \mu \mathrm{~L}$ of each primer (5 mM), $0.5 \mu \mathrm{~L}$ of 1.25-unit LA Taq (Takara), and $1.0 \mu \mathrm{~L}$ of template containing approximately 5 ng of DNA. The thermal cycle profile was that of "shuttle PCR," that is, denaturation at $98^{\circ} \mathrm{C}$ for 10 s and annealing and
extension combined at the same temperature $\left(68^{\circ} \mathrm{C}\right)$ for 16 min . Long PCR products were electrophoresed on a 1.0% agarose gel and then stained with ethidium bromide for band characterization via ultraviolet transillumination. The long PCR products were diluted with Tris-EDTA buffer for subsequent use as PCR templates.

3. Primer walking and sequencing

Fifty primers were used to amplify the contiguous and overlapping segments of the complete genome (Fig. 2). These primers were designed either from the obtained sequences of this species or from the aligned, complete nucleotide sequences of the mitochondrial genome of six species of cartilaginous fishes.

PCR was performed in a Model 2400 or 9700 thermal cycler, and reactions were performed with 30 cycles and a $25-\mu \mathrm{L}$ reaction volume containing $14.4 \mu \mathrm{~L}$ of sterile distilled water, $2.5 \mu \mathrm{~L}$ of $10 \times$ PCR buffer (Perkin-Elmer), $2.0 \mu \mathrm{~L}$ of dNTPs (2.5 mM each), $2.5 \mu \mathrm{~L}$ of each primer $(5 \mu \mathrm{M}), 0.1 \mu \mathrm{~L}$ of 0.5 -unit Ex Taq (Takara), and $1.0 \mu \mathrm{~L}$ of template. The thermal cycle profile was as follows: denaturation at $94^{\circ} \mathrm{C}$ for 15 s , annealing at $47-53^{\circ} \mathrm{C}$ for 15 s , and extension at $72^{\circ} \mathrm{C}$ for $30-60 \mathrm{~s}$. PCR products were electrophoresed on a 1.0% agarose gel and then stained with ethidium bromide for band characterization via ultraviolet transillumination.

Double-stranded PCR products were purified using a High Pure PCR Product Purification Kit and
were subsequently used for direct cycle sequencing with dye-labeled (BIG-DYE) terminators (ABI Perkin-Elmer). The primers used were the same as those for PCR. All sequencing reactions were
performed according to the manufacturer's instructions. Labeled fragments were analyzed using a Model ABI 377 DNA Automated Sequencer (ABI Perkin-Elmer).

Table 1 Polymerase chain reaction (PCR) and sequencing primers in the analysis of the Plesiobatis daviesi mitochondrial genome

		Primers for L-strand
	Name	Sequence (5'-3')
	Long PCR primers	Position

Table 1 Continued

		Primers for H-strand
	Name	
	Long PCR primers	Position

L and H refer to the light and heavy strand, respectively.
The relative positions of primers in the mitochondrial genome are shown in Fig. 2.
Posotions with mixed bases are labeled with their IUB codes.

4. Sequence analysis

DNA sequences were aligned using the available complete mtDNA sequences of other cartilaginous fishes. The locations of the 13 protein-coding genes were determined by comparing the nucleotide or amino acid sequences of bony fish mitochondrial genomes. Twenty-two tRNA genes were identified by their proposed cloverleaf secondary structures and anticodon sequences, while two ribosomal RNA (rRNA) genes were identified by sequence homology and proposed secondary structures. Sequence data are available from GenBank under the accession number AY597334.

5. Phylogenetic analysis

Phylogenetic relationships among

Myliobatiformes species were based on the nucleotide sequences of the mitochondrial 12S rRNA dataset from the 13 species of Myliobatiformes (e.g., Kao et al., unpublished data) listed in the Appendix. DNA sequences were aligned using Clustal 1.83 as implemented in Mega 3.1 (Kumar et al., 2004), and then the large gaps were manually deleted to optimize the alignment. Several approaches were applied to visualize 12 S sequence diversity among the Myliobatiformes species investigated. Tree reconstruction was based on several approaches including neighbor-joining (NJ), maximum parsimony (MP), and Bayesian methods with bootstrap support where appropriate (Nei and Kumar, 2000). NJ and MP trees were constructed using Kimura's two-parameter method (Kimura, 1980) and a heuristic search with 1000 random sequence additions using PAUP* 4.0
b10 (Swofford, 2002). Bayesian analysis was performed using MrBayes version 3.1 (Ronquist and Huelsenbeck, 2003). The best-fit model of nucleotide substitution was the GTR model, which was selected using ModelTest version 3.7 (Posada and Crandall, 1998). The selected model was GTR $+\mathrm{I}+\mathrm{G}(-\operatorname{lnL}=$ 4905.52, $\mathrm{K}=10, \mathrm{AIC}=9831.04)$ with base frequencies of $\mathrm{A}=0.3538, \mathrm{C}=0.2235, \mathrm{G}=0.1751$, and $\mathrm{T}=0.2476$; a proportion of invariable sites of $\mathrm{I}=$ 0.1777; and a gamma distribution shape parameter of variable sites of $G=0.3799$. The analysis was run with the best-fit model for 1×10^{6} generations, with a sampling frequency of 100 generations. The phylogenetic trees were visualized and edited with TreeView software (Page, 1996).

RESULTS AND DISCUSSION

The mitochondrial genomic content and the base composition of each genes are listed in Table 1. The genomic content of the deepwater stingray included 2 rRNA, 22 tRNA, and 13 protein-coding genes, an origin of replication, and a control region, as found in other cartilaginous fishes (Figs 2, 3; Table 1). Its gene order was also identical to that of the other cartilaginous fishes. The arrangements of most genes were encoded on the heavy (H)-strand, excluding ND6, origin of replication, and eight tRNA genes.

With a total length of 17514 bp , the deep water stingray genome is within the range of the known genomes of other cartilaginous fishes (16697-18580 bp; Cao et al., 1998; Delarbre et al., 1998; Rasmussen and Arnason, 1999a, b; Arnason et al., 2001). However, the total length of the deepwater stingray genome was approximately 730 bp longer than that of the thorny skate (16783 bp), which is under the order Rajiformes. By comparing these two sequences, it was found that the difference was apparently due to the length of the control region (1830 bp) of the deepwater stingray genome, which is longer than that of any other known sequences among cartilaginous fishes. However, the length of the control region of the deepwater stingray genome
was shorter than that of the rabbitfish Chimaera monstrosa, which is split into two control regions: NC1 and NC2 (Arnason et al., 2001). Excluding the control region, the length of most genes in the mitochondrial genome of the deepwater stingray was pretty similar to that of other cartilaginous fishes (Table 2). These results indicated that the length of the coding region is somewhat conserved among teleost and cartilaginous fishes.

1. Protein-coding genes

Among the 13 protein-coding genes, there were four reading frame overlaps on the same strand (ATPase 8 and 6 shared 10 bp ; ATPase 6 and COIII shared 1 bp ; ND3 and tRNA ${ }^{\text {Arg }}$ shared 2 bp ; ND4L and ND4 shared 7 bp) was observed. Conversely, there was one reading frame overlap on the opposite strand (ND5 and ND6 shared 4 bp). All mitochondrial protein-coding regions began with the ATG start codon excluding COI, which starts with GTG (Table 1). The open reading frame of the deepwater stingray ended with TAA (ND1, ND2, COI, ATPase 8, ATPase 6, COIII, ND4L, ND5, ND6, and cyt b), TAG (ND3), and the remaining genes had incomplete stop codons of T (COII and ND4).

2. tRNA genes

The mitochondrial genome of the deepwater stingray contained 22 tRNA genes dispersed between the RNA and protein-coding genes (Figs. 2, 3). Its size ranged from 67 to 75 nucleotides (Table 1), which is sufficient to permit the genes to fold into the four-arm cloverleaf secondary structure. However, the tRNA ${ }^{\text {Trp }}$ gene in P. daviesi exhibits unorthodox structures. The D-arms cannot form into a stable stem of 3-4 bp (replaced by a shorter stem of 2 bp), and the TYC arm had 6 bp instead of $4-5 \mathrm{bp}$. There was conservation of the aminoacyl stem (7 bp) among the tRNA genes excluding tRNA ${ }^{\text {Asp }}$, which forms a stem with only 6 bp. All postulated cloverleaf structures contained 4-5 bp in the anticodon stem. As shown in Table 3, most of the tRNA genes were located on the H -strand, with the exception of tRNA-Gln, -Ala, -Asn, -Cys, -Tyr, -Ser (UCN), -Glu, and -Pro, which are located on the light (L)-strand. GCCCATGACACCTCGCCCAGCCACACCCACAAGGGAACTCAGCAGTGATAAACATTGTCCCATAAGCGTAAGCTTGACCCAATTAAAGTTATATAGTGTT 300 GGTCAATCTCGTGCCAGCCACCGCGGTTATACGAGCAACACAAATTAATATTTCACGGCATTAAGGGTGATTAGAAACATCTCTAATAAAATAAAGTTAA 400 AACCTTATTAAGCTGTCATACGCTTTTATATTTTAAAAACCCACTCACGAAAGTAACTTTAAATAAATACAGAACTTTTGACCTCACGACAGTTAAGACC 500 CAAACTAGGATTAGATACCCTACTATGCTTAACCATAAACATTGTTATAATAAACCCACCTTAATACCCGCCCGAGTACTACAAGCGCTAGCTCAAAACC 600 CAAAGGACTTGGCGGTGCTCCAAACCCCCCTAGAGGAGCCTGTTCTATAACCGATAATCCGCGTTCAATCCCACCACTTCTTGCCTTACCACCGCCTATA 700 TACCGCCGTCGTCAGCTCACCCTCTCAGGGCATAAAAGTAAGCAAAATGACCTTTCCCCTCAATACGTCAGGTCGAGGTGTAGCGAATGAAGTGGGAAGA 800 AATGGGCTACATTCCCTTTTCAGGGTATACGAACAGAAGCATGAAAATCTTCTTAAAGGTGGATTTAGCAGTAAGTAAATTTCAGGACATTATACTGAAA 900 CTGGCTCTGGAGCGCGCACACACCGCCCGTCACTCTCCTCAAAAATCATATTTAACTTTTATAAAAAAACTTTTTAGCAAGAGGAGGCAAGTCGTAACAT 1000 $\rightarrow \quad \dagger \quad \vdash$ tRNA-Val \rightarrow
GGTAAGTGTACTGGAAAGTGCACTTGGATTAACAACCAAAGTGTAGCTAAATCAGTAAAGCACCTCCCTTACACCGAGAAGATTCCCGTGCAATCCGGGT 1100 $\vdash 16 \mathrm{~S}$ rRNA \rightarrow
CACTTTGQTACCTCAAAGCTAGCCAAAATAAATTTATTAAGTTCCCCAATATTAACTAACACACACAACCTCTGTCCTCTAATTAAAACATTTTTCCCTT 1200 CCTAGTATGGGCGATAGAACAGAAACCTTTGAGCCATAGAAACAGTACCGCAAGGGAAAGCTGAAAAAGAAATGAAAAAACCATTAAAGTAAAAAGAAGC 1300 AGAGACCCGCCCTCGTACCTTTGCATCATGATTTAGCAAGAACAACTAGGCTAAAAAGCTTTTCCTAGCCTAGCCTCCCGAAACTAAACGAGCTACTTCG 1400 GAGCAGCTTACCCAGAGCCAACCCACCTCTGTAGCAAAAGAGAGGGAAGACTCCCAAGTAGCGGTGATAAGCCTACCGAGTTTAGTGATAGCTGGTCATC 1500 CAAAAAAAGAACTTAAATTCTGCATTAATTTTTCAACCAGCAACTAAAAACCTTTTACTAAGCTCACTTGTAAAAATTAAGAGTTATTCAAAAAAGGTAC 1600 AGCCTTTTTGAATCAAGAAACAACTTTATTAGGAGGGTAATGATTACATTCTTAAAGGGTTTCTCCTCAGTGGGCCTAAAAGCAGCCACCTGTTAAGCAA 1700 GCGTCATAGCTCAAGCCTCACCTGCCCCAACAAATTCCCATACTCATTCTCAACCCCCTACCTCACTATTGGATTATTTTATTAACCTAATTATAAAAGA 1800 AATTATGCTAAAATGAGTAATGAGGGAATAACCCCCTCCCCGACACCAGTGTATGTCAGAAAGAATTAAATCACTGACAATTAACCGATGCCATAGTTGA 1900 GGCTCTCATGACATAAACACTAAACACAAGAAAACCCCATACAAAACCTCGTTAACCCTACACAGGAGTGTCCCCGGGAAAGATTAAAAGAAAATAAAGG 2000 AACTCGGCAAACACAAACTCCGCCTGTTTACCAAAAACATCGCCTCTTGCCCCACTCATGTATAAGAGGTCCCGCCTGCCCTGTGATTTTTTAACGGCCG 2100 CGGTATTCTGACCGTGCGAAGGTAGCGTAATCACTTGTCTTTTAATTGAAGACCCGTATGAAAGGCATCACGAGAGTTTATCTGTCTCTATTTTCCAATC 2200 AATGAAATTGAACCTCTCGTGCAGAAGCGAGAATAAAAACATAAGACGAGAAGACCCTATGGAGCTTCAAACACTTAAGTTACTTTTAAAACATAAAATT 2300 CCTACCTTCGGGTATAAACTAAAAACTAATTTCTTAACTTAACCTGTTTTTGGTTGGGGCGACCAGGGGGAAAAACAAAACCCCCTTATCGAATGTGTTA 2400 AACACAAAAATTAGGACTACAGTCCTAATCAATAGAAAATCTAACGAACAATGACCCAGGGCCCGATCCCTGATCAATGAACCAAGTTACCCTAGGGATA 2500 ACAGCGCAATCCTTTCTTAGAGCCCCCATCGCCGAAAGGGTTTACGACCTCGATGTTGGATCAGGACATCCTAATGGTGTAGCCGCTATTAAGGGCTCGT 2600 TTGTTCAACGATTAACAGTCCTACGTGATCTGAGTTCAGACCGGAGTAATCCAGGTCAGTTTCTATCTATGATGGTATTTTCCCCAGTACGAAAGGACCG 2700

GGAAAATGAAGCCTATGCCCAAAGTACGCTTCCCCCCAACCTGCTGAAACCAACTCAAGCAGATAAAGGCAGCCACCTTTAAACCAAAGATAACGGTTGT 2800 tRNA-Leu(UUR) \rightarrow
TGGGGTGGCAGAGCCTGGTAAATGCGAAAGACCTAAGTTCTTTAATCCAGAGGTTCAACTCCTCTCCTTAACTATGTTAAACTTCACCCTTCCCTACATC 2900 $\begin{array}{llllllll}M & L & N & F & T & L & P & Y \\ I\end{array}$
ATCAACCCCCTAGCCTTCATCATCCCCATCCTTCTAGCCACAGCCTTCCTTACCTTAATTGAACGAAAAATTCTAGGTTACATACAATCCCGCAAAGGTC 3000

 CTTTCTAACCGCCCCTGCCCTCGCCTTAACCCTCGCCCTATTAATATGAATACCCCTACCCCTCCCATACTCAATCCTAAACCTAAACCTAGGACTACTT 3200
 TTTATCCTAGCTATCTCAAGCCTAACAGTCTACACAATTTTAGGCTCAGGCTGAGCATCAAACTCTAAATACGCTCTCATGGGAGCTCTCCGTGCAGTCG 3300

 AACCATTTGACTGATCGTCCCCACATGACCTCTAGCCATAATATGATATATCTGAACACTACCAAAAACAAACCGAGCCCCCTTTGACCTCACAGAGGGG 3500
 GAATCCGAACTAGTCTCAGGTTTCAACACTGAGTACGCAGGGGGCTCTTTCGCCCTATTCTTCTTAGCCGAATACTCCAATATCTTACTAATAAATACCC 3600
 TATCCGCTATCCTATTCCTAGGCGCCTCCTACACCCCACACTTCCCACAACTAGCTACCCTTAACCTTATACTCAAAACAACCGCACTAACCCTACTATT 3700
 TCTATGAATTCGAGCCTCTTACCCCCGATTTCGATACGACCAACTCATACACCTTGTCTGAAAAAACTTTCTACCAATAACACTAGCCCTGATCCTATGA 3800
 CACATCACCCTACCAATCATTACAGCAAGCCTCCCACCAATAATAACTTAA - trNA-Ile-

 W L T G Q W N M T E M I N P L S T T L L S I A L A I K I G L A P CATTTCTGACTACCAGAAGTACTTCAAGGACTTAACCTACTCACAGGACTCATCCTATCTACATGACAAAAACTTGCACCATTCGCAATTCTACTACAAC 4500
 TCTACCCCCTCCTTAACCCAACATTACTTGTATCAATGGGCATACTATCAATCGTCATCGGTGGTTGAGGCGGCCTCAACCAAACACAACTACGAAAAAT 4600

 ACCTCCTCATTATTCCTTCTCCTCTACAACAACAACACCACAAAAATTAATTCAATCTCCACATCATCAACTAAATCCCCACTACTATCCATCATAACCA 4800
 TATTAACACTCCTCTCTCTAGGGGGTCTACCCCCTCTCACAGGCTTCATGCCTAAGTGACTTATCCTCCAAGAAATAACCAAACAAAATCTCCTCATCCT 4900

 TCATCATCATGACGAACAAAAACTATCCAACCCAACTTAACCCTAATAACCTCCCTCTCCCTTCTTCTCCTCCCATTGACCCCCACAATACTTTCACTAA 5100
 H- tRNA-Trp \rightarrow
CTACTACATAAAGAAATTTAGGTTCAAATAAACCAAAAGCCTTCAAAGCTTTAAACAAGAGTGAAAACCCCTTAATTTCTG TAAGGTTTGCAAAACTTT 5200 T T $\dashv \vdash \mathrm{COI} \rightarrow$
GTGTGACAATTAATCGTTGATTATTTTCTACCAATCACAAAGACATTGGCACCCTTTATTTAATCTTTGGTGCATGGGCAGGAATAGTGGGTACCGGCCT 5600
 CAGCCTCTTAATTCGAACAGAGCTAAGCCAACCGGGGGCTTTATTAGGGGATGATCAAATCTATAATGTGCTCGTAACCGCTCATGCCTTTGTAATAATC 5700
 TTCTTTATAGTTATACCAATTATAATCGGCGGGTTCGGCAATTGATTAGTTCCCTTAATAATCGGCGCCCCGGACATAGCCTTCCCGCGAATAAACAACA 5800
 TAAGTTTCTGACTCCTTCCTCCCTCTTTTCTCTTATTACTAGCTTCCGCAGGGGTAGAAGCCGGAGCTGGCACAGGATGAACCGTTTACCCCCCATTAGC 5900

 ACGATCATTAATATGAAACCACCCGCGATCTCCCAATACCAAACGCCTCTTTTTGTTTGATCTATTCTCATTACAACTGTCCTTCTTTTATTGTCCCTTC 6100

 CCTCTTTTGATTTTTCGGACACCCAGAAGTATATATCCTAATCCTTCCTGGCTTTGGTATAATTTCCCATGTAGTCGCGTATTATTCTGGAAAAAAAGAA 6300
 CCTTTTGGTTATATAGGTATAGTTTGAGCAATAATAGCTATCGGCCTTCTTGGCTTTATTGTTTGAGCCCATCATATATTCACAGTAGGTATAGACGTAG 6400
 ACACACGAGCCTACTTCACATCAGCAACTATAATTATCGCTATTCCAACAGGGGTAAAAGTATTTAGTTGACTAGCAACCCTTCATGGCGGCACCATTAA 6500
 ATGAGAGACACCACTCCTTTGAGCCCTAGGGTTTATTTTCCTATTTACTGTCGGTGGCTTAACTGGTATTATCCTAGCCAACTCATCCCTCGATATTGTT 6600
 CTTCACGATACTTACTATGTTGTAGCCCACTTCCATTATGTTTTATCAATAGGGGCAGTATTCGCTATCATAGCTGGTTTCGTCCACTGATTTCCTTTAA 6700
 TCACAGGCTACACTCTTCACCCCACTTGAACTAAAGTACAATTCCTAGTAATATTCGTAGGAGTCAATATAACCTTCTTCCCTCAACACTTCTTGGGTCT 6800
 AGCTGGAATACCACGCCGATATTCAGACTACCCGGACGCCTATACCTTTTGAAATGTAATTTCATCTATCGGTTCTTTAATCTCATTAGTAGCTGTAATC 6900

 $\begin{array}{llllllllllllllll}P & Y & H & T & Y & E & E & P & A & F & V & Q & V & Q & Q & P\end{array}$

CAACCACATAACCACTCTGTCACTTTCTTAGATTCTAGTAAAACTATTACATTTCCTTGTCAAGGCAAAATTGTGGGTTTAACCCCCACGAATCTT

 \vdash COII \rightarrowTATGGCACATCCATCACAATTAGGTTTTCAAGACGCAGCCTCTCCAGTTATGGAAGAGCTCCTCCACTTTCACGATCATACCTTAATAATCGTATTTCTC 7300
 ATTAGCTCATTAGTCCTTTACGTTATTGTAGCAACAGTTTCAACCAAATTAACTAACAAATATATTCTAGACTCCCAAGAAATTGAAATCGTTTGAACTA 7400
 TCGTCCCAGCAATTATCTTAGTTATAATTGCCGTACCATCCCTGCGCATTCTCTATTTAATGGACGAAATTAATGACCCCCACATCACAATCAAAACCAT 7500
 TGGCCACCAATGATATTGAAGTTATGAATACACAGACTACCAAAACCTGGAATTTGATTCTTACATAACTCAAACAGAAAATTTAACCCCAGGACAATTT 7600
 CGCCTCCTAGAAACGGACCACCGCATAGTGGTCCCAATACAATCCCCCATTCGAGTCTTAGTAACAGCAGAAGATGTCCTCCACGCATGAACAGTCCCAG 7700
 CACTAGGAATTAAAATAGACGCAGTACCAGGGCGCTTAAACCAAACAGCCTTCATCATCTCTCGCCCAGGTATCTTCTATGGCCAATGCTCCGAAATTTG 7800

 $\begin{array}{llllllllllll}M & P & Q & L & N & P & G & P & W & F & L & I\end{array}$ TTTCCTATTTACATGACTTTTTTTCTTAGCTATTATACCAAACAAAGTAATATCTTACCTCCTCAATAATAATCCCACAACAAAAAATAACCAAAAGCCA 8100
 AAACCAAACCCCTGAAATTGACCATGGCCCTAAACTTCTTCAATCAATTCTTAAGCCCATCACTACTTGGACTCCCCCTCATTGCTCTAGCAATCATAAT 8200
 CCCTTGACTCATCTTTCCTCCCCCCTCTAAACAATGACTTACTAACCGCCTATTAACCCTTCAAACATGATTCATTAACCGATTCACCCATCAACTTATA 8300
 CAACCACTAAGCCTCGGAGGCCATAAATGAGCCTCAATTCTTACCGCACTTATATTATTTTTAATCACTATTAACCTCTTGGGCTTACTCCCATATACAT 8400

 AAGCCACTTCCTGCCAGAAGGAACACCCGCCCCCCTAATCCCTATTCTTATTATTATCGAAACTATTAGTCTACTTATTCGCCCCTTAGCCCTAGGAGTC 8600
 CGACTCACAGCTAACCTCACAGCAGGCCACCTTCTAATACAACTAATCGCAACTGCAGCATTTGCCCTAATCTCCATCATGCCTTCAATCGCCCTCCTCA 8700

 $+\mathrm{COIII} \rightarrow$
TGTTTAATGGCCCATCAAACACATGCATATCACATAGTTGACCCCAGCCCATGACCCTTAACAGGAGCAGTAGCAGCCCTTCTCATAACCTCAGGTCTCG 8900

 AACATTCCAAGGTCACCACACCCTACCAGTCCAAAAAGGCCTGCGATACGGAATAATCTTGTTTATTACATCAGAAGTCTTCTTCTTTCTTGGCTTCTTC 9100
 V A TCAACACCGCCGTCCTCTTGGCCTCTGGAGTAACAGTCACCTGAGCCCACCATAGTGTCATAGAAGGTAACCGAAAAGAAGCCATTCAAGCACTCGCCCT 9300

TACAATCACTCTCGGCTTTTATTTCACCACACTCCAAGCCATAGAATACTATGAAGCCCCCTTCACCATAGCCGACAGCGTCTATGGAACAACCTTCTTC 9400

 ATTTTGGCTTCGAAGCCGCTGCCTGATACTGACATTTTGTCGATGTAGTCTGATTATTCCTTTACGTCTCAATCTACTGATGAGGTTCATAAGCTTTTCT 96

AGTATAAAACTAGTACAAATGACTTCCAATCATTTAATCTTGGTTTAAACCCAAGGAAAAGCAATGAACCTCATCACATTTGTTGTCGCCCTTACAGCCC 9700 $\begin{array}{lllllllllllll}M & N & L & I & T & F & V & V & A & L & T & A & L\end{array}$ TCATTTCCCTAATCTTAGCGATATTAGCTTTTTGACTGCCCACCCTTAGCCCAGATAACGAAAAAATATCCCCCTATGAGTGCGGCTTTGACCCACTAGG 9800
 TACTGCACGCTTACCCTTCTCACTCCGCTTCTTCCTAGTTGCTATCCTCTTCCTCCTTTTTGACTTAGAAATCGCCCTACTTCTCCCACTCCCCTGAGCT 9900
 GTCCAACTCGACTCCCCCCTCATCACCTCTTTCTGAGCAACAACCATTTTACTCCTCCTAACTTCAGGCCTAATTTATGAATGACTCCAAGGGGGCCTAG 10000

 W A D * $\quad \mathrm{D}$ TCACCTTTTCCTCTGCTTTTGCCTTAAGCCTACTTGGCCTAGCCCTAAACCGCTCCCATCTTTTATCCGCCCTCATCTGCCTCGAAGGTATAATATTATC 10200
 CCTATTTACCGCCATCGCTCTTTGATCCACAACAATAACCACACCAACCTGCTCCCTCGCACCCATGATTCTTCTAACATTTTCAGCCTGTGAAGCAAGC 10300
 GCAGGTTTAGCCCTCCTAGTAGCCACCACCCGCACCCACGGCTCAGATATACTAAAAAATCTTAATCTCCTACAATGTTAAAAATTATTATTCCTACAAT 10400

$\begin{array}{llllllll}\mathrm{M} & \mathrm{L} & \mathrm{K} & \mathrm{I} & \mathrm{I} & \mathrm{I} & \mathrm{P} & \mathrm{T} \\ \mathrm{I}\end{array}$
TATACTTTACCCAATCTCATGGGCCACCCCCAAAAAATGACTATGAACTGCCTCCACATCCTACAGCCTTCTCATCGCATTTATCAGCTTATCTTGATTT 10500
 AAATGAGATACTGAAGTCAGCTGAGATTTCTCCAACCTCTACCTAGGAGTAGACCCCCTCTCATCCCCCCTACTCACATTAACCTGTTGACTTCTCCCAC 10600
 TCATACTACTTGCTAGCCAAAATCACCTTAACAACGAACCACACACTCGACAACGCATTTATATTAACCTTCTTATCACTCTTCAACTCCTCCTAATCCT 10700
 AGCTTTCAGTGCTACTGAAATAATCTTATTTTATATCATATTTGAAGCAACCCTCATCCCAACACTCATCATCATTACCCGTTGAGGCAACCAAGCCGAA 10800
 CGCCTAAATGCAGGAATTTATTTTTTATTTTATACACTAATAGCCTCCCTACCCCTCTTAATCGCCCTCCTCGCCTTACAAAATGACTTTGGCTCACTCT 10900
 CAATGCTCACCTTTCAATTCCCCCAACTCCTAAACTCCAGCTCATGAACAAACAAGTTCTGATGAGCCGCATGTCTAATCGCCTTCTTAGTCAAAATACC 11000
 ACTCTACGGAACACACCTCTGACTACCCAAAGCCCATGTAGAAGCCCCTATCGCCGGATCCATGATCCTAGCCGCAATCCTACTAAAACTAGGTGGTTAT 11100
 GGAATAATACGAATTATCTCAATCCTTGATCCCCTCACAAAAGAAATGGCCTTCCCATTCCTAATTCTAGCCCTCTGAGGAATTATCATGACAAGTTCCA 11200
 CCTGTTTACGCCAAACAGACCTTAAATCCTTAATTGCCTACTCATCAGTAACCCACATAGGTCTTGTTGTAGCAGCCATCCTCATTCAAACACCATGAAG 11300
 (
 CTCCTCCTCACCCGAGGGATACAAATTGTTCTCCCATTAATAGCAACTTCGTGATTCTTAATTAACCTAGCAAACCTCGCCCTACCCCCAACCCCAAACC 11500
 TAATGGGCGAACTCCTTATTATATCTTCTCTTTTCAAATGATCCCAATGAACCATCATCATAACTGGTTTAGGCGTCTTATTAACTGCCTCTTACTCCTT 11600

 ст TCCCTCACTCCTCCTTATCTCCAAACCAGAACTAATTCTAGGCTGAACATC $-1+\mathrm{tRNA}$-His \rightarrow P $\quad \mathrm{S} \quad \mathrm{L} \quad \mathrm{L} \quad \mathrm{L} \quad \mathrm{I} \quad \mathrm{S} \quad \mathrm{K} \quad \mathrm{P}$ H tRNA-Ser(AGY) \rightarrowGTTTTAAATTTGACACCTATTCCATTATTTTCACTCCCATCGCCCTCTACGTAACCTGGTCTATCCTAGAATTTGCCCTATGATACATACACTCAGACCC 12300CAACCTTAACAAATTCTTCAAATATCTCCTTCTATTCTTAATCACAATACTTATTCTCATCACAGCAAATAATCTTTTCCAACTATTCATCGGCTGAGAA 12400GGCGTAGGCATTATATCATTTCTTCTCATCGGCTGATGACTTAGTCGGGCCGACGCAAACACAGCTGCCCTTCAAGCTATCATCTACAACCGCATTGGCG 12500 ATATCGGCCTGATCACAGCCATAGCATGACTAGCTATAAACCTCAACTCATGAGAAATTCAACAACTCTTCTTCCTCTCCAAAAATACAGATTTAACTCT 12600
 CCACTTTTAGGTTTAGTTCTAGCAGCAGCAGGAAAATCCGCCCAATTTGGGTTACACCCATGACTTCCTGCCGCCATAGAAGGCCCCACACCAGTTTCC 12700

 TATGTTTAGGTGCACTAACCACCCTTTTTACAGCAACCTGTGCACTTACCCAAAACGACATTAAAAAAATTATTGCTTTCTCTACATCCAGTCAACTAGG 12900
 ACTTATAATGGTCACTATCGGCCTTAACCAACCCCAATTAGCCTTCCTCCACATCTGCACACATGCCTTCTTTAAAGCAATACTCTTCCTCTGCTCAGGT 13000
 TCCATCATTCACAGCCTCAACGACGAACAAGACATTCGAAAAATAGGAGGCATACACAAACTTCTTCCCTTTACCTCCTCATCCCTAACAGTTGGTAGCC 13100
 TAGCTCTCACTGGTATGCCCTTCTTATCCGGATATTTCTCTAAAGATGCCATCATTGAAGCAATAAACACATCACACCTTAACGCCTGAGCCCTAACTTT 13200
 AACCCTTCTAGCTACGTCCTTCACCGCTATCTATAGCTTACGCCTAACATCCTTTTCACTCATGAACTACCCACGATTCACACCCCTTTCACCCATCAAC 13300

GAAAATAACCCCCTACTCATTAACCCAATCAAACGACTCGCCTACGGAAGCATTCTAGCAGGCCTAATCATCACCTCTAACATACCACCAACTAAAACAC 13400
 AAATCATAACAATAACACCTCTCCTTAAACTCTCCGCCCTCCTAGTAACAATCCTCGGCCTTATTTTAGCCCTAGAATTGACAAACCTAACCTCCACCCA 13500
 ACTCAAAACCCACCCAAACCTATCCTACCATAACTTCTCTAACATACTAGGCTATTTCCCCTCAATTCTTCACCGACTCCCACCAAAACTCAGCTTATCT 13600
 TACGCCCAAACCGTTTCAACCCAAATAATTGATCTCTCATGAAACGAAAAAATCGGCCCAAAAAGCCCTATTATTCAACAAACATTCTTAATTAAATTAT 13700

CAACCTCCCCTCAACAAGGCTTAATCAAAACATACCTTCTCCTACTTCTCCTTACCCTTACCTTATCCTCAGCCCTCACCTTACTTTAAACCGTCCGCAA 13800
 AGCCCCTCAAGATATCCCTCGCGTCAACTCCAACACCACAAACAAAGTCAAAAGCAACATTCAACCCCCTAAAACTAAAACTCCACTCCCTCAAGAATAC 13900

 AACCCACTCCAAAAAGAATTCCAAAATACCCAACCACATAAGCTAAAACAGACCAATCACCCCACGACTCAGGATAAGGCTCAGCAGCTAACGCCGCCGT 14100
 ATAAGCAAACACAACTATTATCCCCCCCAAATAAATTAAAAACAAAATCAAAGACAAAAAAGAACTCCCAAATCCAACCAATAAACCACAACCCACCCCA 14200

 ACATCATTATTCCTACTTAGACTCTAACTAAGACCTTTAATCCGAAAAACTACCGTTGTTATTCAACTATAGAAAGCCTTAATGACTACTACAAACACCC 14400 Y M M GCAAAACCCATCCCCTATTCAAAATTATCAATAACTCCGTAATTGACCTCCCAACTCCAACTAACATCTCTGCCTGATGAAACTTCGGCTCACTTGTAGG 14500
俗
 GACGTAAACTACGGCTGAATAATCCGCAACCTTCACGCCAATGGCGCCTCCCTCTTTTTCATCTGCGTTTACCTCCACATCGCCCGAGGACTTTACTACG 14700
 GCTCCTACCTAAACAAAGAAACCTGAAATATTGGGGTAATTATCCTCTTACTCCTTATAGCCACTGCCTTCGTAGGATACGTCCTCCCATGAGGACAAAT 14800
 ATCATTCTGAGGCGCAACCGTCATCACCAACTTACTATCCGCCCTCCCTTATATTGGAGACACACTCGTTCAATGACTCTGAGGTGGCTTCTCAATCGAC 14900
 AATGCAACACTAACCCGATTCTTTACATTCCACTTCCTCCTCCCCTTCCTAATCGCAGCCCTAACTATAGTCCACCTTCTCTTCCTCCACACCTCCGGTT 15000
 CAAATAACCCAACTGGTCTTCCCTCTGACATAGACAAAATCCCATTTCACCCCTACTACTCATTTAAAGACCTCCTCGGCTTCTTTCTCCTCCTGCTCCT 15100
 ACTTACCCTCTTAGCCTTACTCACACCCAACCTCCTAACCGACACAGAAAACTTTATTCCAGCCAACCCTCTCGTCACACCCCCACACATCAAACCAGAG 15200
 TGGTACTTTCTATTCGCTTACGCCATTCTACGCTCTATCCCCAACAAACTAGGAGGCGTACTTGCCCTTGCCCTTTCAATCCTAATCCTCTTCTTAGTCC 15300

 CGGAGGACAACCCGTAGAACAACCATTTATTATCATTGGCCAAATCGCCTCCATCACCTATTTCTCCTTCTTTCTCCTCCTTTTTCCAATCGCCGGTTGA 15500

 W \quad E $\quad \mathrm{N} \quad \mathrm{K} \quad \mathrm{M} \quad \mathrm{L} \quad \mathrm{N} \quad \mathrm{L}$
CAGTGCAAAAGCACTTTCAAGAAAAAGAGGACAAACCCTTATCCTTGGCTCCCAAAGCCAAGATTTTTATTAAACTATTTCCTGAACTCTATTAGAAAAT 15700
 Repeat 1 Repeat2
TTGTCATATAATACATAAGACAGTCTATGCTTAATCCTCATACATCTATATACCCCTATATCATAACATATCTATGCTTAATCCTCATACATCTATATAC 15900 Repeat 3 (partial)
CCCTATATCATAACATATCTATGCTTAATCCTCATTCATCTACATTCCCCTATTTCATTACCCACTCAACTCCACACTAACAGATTCTATACCCTAATCT 16000
 TAS
 TAACTCCCACTACCGTACTGGTTAATTTCACTATTAATCATCTATTCACCTTCTGTCTTATCAGCTAGTGATTAATACTCCTTTACTTTCCAGTCCTCTC 16300 CAAATAATCTATAACTTATCAATGTTTAATCAATATTAATCGATAATATAACTATCTATGCTTAATCAGCATTAATCGACATTCCCTATTTCATAACAT 16400 CSB-D
$\underline{C} \underline{A} \underline{G} \underline{A} \underline{T} \underline{T} \underline{C} \underline{A} \underline{A} \underline{A} \underline{C} \underline{A} \underline{T} \underline{T} \underline{A} \underline{A} \underline{C} \underline{A} \underline{C} \underline{A} \underline{T} \underline{T} \underline{T} \underline{C} \underline{A} \underline{A} \underline{T} \underline{A} \underline{T} \underline{T} \underline{C} \underline{T} \underline{C} \underline{C} \underline{G} \underline{A} \underline{T} \underline{A} \underline{A} \underline{T} \underline{T} \underline{C} \underline{T} \underline{T} \underline{T} \underline{G} \underline{G} \underline{G} \underline{T} \underline{G} \underline{G} \underline{C} \underline{G} \underline{G} \underline{G} \underline{A} \underline{A} \underline{A} \underline{T} \underline{A} \underline{A} \underline{T} \underline{C} \underline{A} \underline{A} \underline{C} \underline{G} \underline{A} \underline{T} \underline{C} \underline{T} \underline{A} \underline{A} \underline{T} \underline{A} \underline{G} \underline{A} \underline{A} \underline{T} \underline{A} \underline{C} \underline{A} \underline{C} \underline{C} \underline{T} \underline{T} \underline{G} \underline{G T T} \underline{C} \underline{G} \underline{A} \underline{T T T} \underline{G T} 16500$

 CTTCATCCACTATTTCTTCGTTACGGTACTGTCTGATAGGATGGTAATGACCTCGACTACAAGTTAATTGATTAGCTACTTCTTTCATTCACTGATCACT 16800 CGGTCCAGAGGACTACCGTTGAAATTATCAAAAGGTTATAGTTGAGAATTTAATCAATATTCTATAATTAATTGAGCAATTAATCTAAAAAAGACATGTA 16900 AAAATTTTTCATAAGAATATTAATGATTAATCTTTGATAAAATAGGATAACAATGAAGCCABGCTTAATTCTGAAGCTAAGATAGGTGCCCCCETGT17000 CSB II CSB III
GCGGGCGTGCGTAAAAGATATTTATACAAGAAATTTTTTGGGAAAAACCCCCCCTCCCCCCAAAAAACCCGGTTATCCTCGAAAAACCCCTAAAACGAG17100
 ACTTGGGGAAAAAAATGAACTACTCATGATGATTTAAAAAAAAAAACAAAAAGATTACCGTGTCCAGGACATTATCTGGATCTATTATGTGAABAATTAC 17300 TTTTTTTTGCCCTAATATACCTGTTATATTTAAATTTTTTTTACTGGTTGTGGGCGTGTGTGTGATGCATACATAGTGTCAAACACACATGTGTATTACC 17400 TGAATGTGCCTACATTATACACACAAATATGCATATTTTTGCACAAAAABACACACATACACACATTTTCTCCACCATATCCTAACTTCACTTCAAATC 17500 CTTCCACTATGATC

Fig. 3 The complete L-strand nucleotide sequence of the deepwater stingray mitochondrial genome. Position 1 corresponds to the first nucleotide of the tRNA Phe gene. The direction of transcription for each gene is shown by arrows. The beginning and end of each are indicated by vertical bar (\vdash and \dashv). Transfer RNA genes are boxed; corresponding anticodons are indicated in black boxes. Amino acid sequences presented below the nucleotide sequence were derived using mammalian mitochondrial genetic code (one latter amino acid abbreviations placed below the first nucleotide of each codon). Stop codons are overlined in gray boxes and indicated by asterisks. Non-coding sequences are underline with dots. TAS, putative termination-associated sequence; CSB2, 3, and D, conserved sequence blocks. Sequence data are available from DDBJ/EMBL/GenBank with accession number.

Table 2 Comparisons of lengths (bp) of 8 cartilaginous fish mitochondrial genomes

Subclass	Holocephali	Elasmobranchii						
Order	Chimaeriformes	Carcharhiniformes	Carcharhiniformes	Heterodontiformes	Squaliformes	Myliobatiformes	Rajiformes	Rajiformes
Family	Chimaeridae	Scyliorhinidae	Triakidae	Heterodontidae	Squalidae	Plesiobatidae	Rajidae	Rajidae
Species name	Chimaera monstrosa	Scyliorhinus canicula	Mustelus manazo	Heterodontus francisci	Squalus acanthias	Plesiobatis daviesi	Raja radiata	Raja porosa
Common name	rabbitfish	small-spotted catshark	starspotted smooth-hound	horn shark	spiny dogfish	deepwater stingray	thorny skate	ocellate spot skate
Accession number	AJ_310140	Y_16067	AB_015962	AJ_310141	Y_18134	AY_597334	AF_106038	AY_525783
12S rRNA	949	957	952	952	951	960	967	965
16 S rRNA	1665	1673	1669	1676	1676	1689	1678	1676
ND1	972	975	974	976	975	978	975	975
ND2	1044	1047	1046	1047	1047	1044	1047	1047
COI	1560	1554	1556	1557	1557	1551	1557	1557
COII	691	691	690	691	691	691	691	699
ATPase 8	168	168	167	168	168	168	168	168
ATPase 6	684	684	683	684	684	684	684	684
COIII	786	786	785	786	786	786	786	786
ND3	349	351	350	351	351	351	351	351
ND4L	297	297	296	297	297	297	297	297
ND4	1375	1381	1380	1381	1381	1387	1381	1387
ND5	1839	1830	1826	1830	1833	1824	1836	1836
ND6	522	522	521	510	522	522	519	519
cyt b	1144	1144	1145	1146	1146	1146	1143	1143
Control region	1602, 1503	1050	1067	1068	1080	1830	1064	1310
Total	18580	16697	16707	16708	16738	17514	16783	16972
Reference	Arnason et al. (2001)	Delarbre et al. (1998)	$\begin{aligned} & \text { Cao et al. } \\ & \text { (1998) } \end{aligned}$	Arnason et al. (2001)	Rasmussen et al. (1999) ${ }^{1}$	present study	Rasmussen et al. (1999) ${ }^{2}$	$\begin{aligned} & \text { Kim et al. } \\ & (2005) \end{aligned}$

3. Ribosomal RNA genes

The length of 12 S and 16 S rRNA genes of this deepwater stingray were 960 and 1689 bp, respectively (Table 1). They are located between the tRNA ${ }^{\text {Phe }}$ and tRNA ${ }^{\text {Leu(UUR) }}$ genes and separated by the tRNA ${ }^{\text {Val }}$ gene (Figs. 2, 3).

4. Noncoding sequences

The L-strand replication origin in the deepwater stingray was located between the tRNA $^{\text {Asn }}$ and tRNA ${ }^{\text {Cys }}$ genes, and it was 34 bp in length (Fig. 2), indicating that it has the potential to fold into a stem-loop secondary structure. This region has been observed in most cartilaginous fishes.

The major noncoding region found in the deepwater stingray was located between $\mathrm{RRNA}^{\text {Pro }}$ and tRNA ${ }^{\text {Phe }}$ and was up to 1830 bp in length, which was much longer than that of the sharks and other rays. Several unique characteristics were identified in the control region (Fig. 3), namely three conserved
sequence blocks (CSB II, III, and D; Kawaguchi et al., 2001), a termination-associated sequence, and the two copies of 47-bp repeat regions (repeat 1 and 2). Repeated sequences have also been observed in teleosts (Cecconi et al., 1995; Lee et al., 1995; Chen et al., 1998; Chen et al., 2002; Stefanni et al., 2002). However, only the first 18 bp of the $3^{\text {rd }}$ repeat region were identical to those of the $1^{\text {st }}$ and $2^{\text {nd }}$ repeat regions. Tandem repeats were located near the 5^{\prime} end of the control region. Such repeats may result from strand slippage of the third displaced DNA strand in the D-loop (Buroker et al., 1990).

5. Phylogenetic relationships among other Myliobatoidei families

To determine the phylogenetic position among Myliobatoidei families, the 12 S rRNA sequences of 13 fish species were retrieved from GenBank (Appendix). Sequence alignment resulted in 748 molecular characters. The same topology of

Table 3 Location of features in the mitochondrial genome of Plesiobatis daviesi

Gene	Position number		Size (bp)	Codon		Strand
	From	To		Start	Stop	
1 tRNA ${ }^{\text {Phe }}$	1	70	70			
212 SRNA	71	1030	960			
3 tRNA ${ }^{\text {val }}$	1037	1108	72			
4 16S rRNA	1110	2798	1689			
5 tRNA ${ }^{\text {Leu(UUR) }}$	2799	2873	75			
6 ND1	2874	3851	978	ATG	TAA	
7 tRNA ${ }^{\text {Ile }}$	3854	3922	69			
8 tRNA ${ }^{\text {Gin }}$	3925	3996	72			L
9 tRNA $^{\text {Met }}$	3998	4067	70			
10 ND2	4068	5111	1044	ATG	TAA	
11 tRNA ${ }^{\text {Trp }}$	5112	5181	70			
12 tRNA $^{\text {Ala }}$	5183	5251	69			L
13 tRNA ${ }^{\text {Asn }}$	5253	5325	73			L
14 Rep-Origin	5326	5359	34			L
15 tRNA ${ }^{\text {Cys }}$	5360	5427	68			L
16 tRNA ${ }^{\text {Tyr }}$	5431	5501	71			L
17 CO I	5503	7053	1551	GTG	TAA	
18 tRNA $^{\text {Ser(UCN }}$)	7059	7129	71			L
19 tRNA ${ }^{\text {Asp }}$	7131	7197	67			
20 CO II	7202	7892	691	ATG	T--	
21 tRNA ${ }^{\text {Lys }}$	7893	7964	72			
22 ATPase 8	7966	8133	168	ATG	TAA	
23 ATPase 6	8124	8807	685	ATG	TAA	
24 COIII	8807	9592	786	ATG	TAA	
25 tRNA ${ }^{\text {Gly }}$	9593	9663	71			
26 ND3	9664	10014	351	ATG	TAG	
27 tRNA ${ }^{\text {Arg }}$	10013	10084	72			
28 ND4L	10085	10381	297	ATG	TAA	
29 ND4	10375	11755	1387	ATG	T--	
30 tRNA ${ }^{\text {His }}$	11756	11824	69			
31 tRNA ${ }^{\text {Ser(AGY) }}$	11825	11892	68			
32 tRNA ${ }^{\text {Leu(CUN })}$	11894	11965	72			
33 ND5	11966	13789	1824	ATG	TAA	
34 ND6	13786	14307	522	ATG	TAA	L
35 tRNA ${ }^{\text {Glu }}$	14308	14376	69			L
36 cyt b	14382	15527	1146	ATG	TAA	
37 tRNA ${ }^{\text {Thr }}$	15534	15607	74			
38 tRNA ${ }^{\text {Pro }}$	15617	15684	68			L
39 Control Region	15685	17514	1830			

phylogenetic trees was obtained using the NJ, MP, and Bayesian methods with the rabbit fish Chimaera monstrosa as an outgroup. This topology is shown in Fig. 4 with bootstrap values. Phylogenetic analysis revealed that fish from the order Myliobatiformes were well separated according to taxonomic levels
such as family, genus, and species. This appears to support the topology obtained in previous molecular studies (Dunn et al., 2003). Conflicting results regarding the phylogenetic relationships among Urolophidae, Plesiobatidae, and Hexatrygonidae have been reported by previous morphological studies.

Fig. 4 Phylogenetic relationships among myliobatoidei families. The 50\%-majority rule consensus of post-burn-in sampled trees from Bayesian inference analysis based on the 12 S rRNA data set under GTR + I + G model is shown. Branch support values estimated by bootstrap pseudo-replicates in Bayesian inference, maximum parsimony and neighbor-joining, respectively, are shown above each branch. (-) indicates that either bootstrap value or Bayesian posterior probabilities below 50% in the analysis. Nodes with either BP or BPP below 50% are not numbered.

Nishida (1990) placed Plesiobatis and Hexatrygon as two basal lineages of Myliobatiformes, whereas McEachran et al. (1996) placed Hexatrygon, Plesiobatis, and Urolophus as a basal lineage. Based on the present study, Plesiobatis and Hexatrygon form a sister group, which supports the hypothesis proposed by Nishida (1990). Conversely, most morphological studies indicated a closer relationship between Urolophus and Plesiobatis (Nishida, 1990; McEachran et al., 1996; McEachran and Aschliman, 2004). However, the sister relationship between Urolophus and Plesiobatis was not supported by the present study. Also in this study, the families Plesiobatidae and Urolophidae were separated from each other. The family Urolophidae was more closely related to Dasyatidae than to Plesiobatidae or Hexatrygonidae. This was in accordance with the hypothesis proposed by Nelson (2006). The molecular phylogeny of Myliobatoidei presented here is only
tentative because several important genera were not included in our phylogenetic analyses. Moreover, it is important to clarify the placement of Plesiobatis within Myliobatiformes. Because no future resolution on the relative position of Plesiobatis was achieved, future work based on more complete mitochondrial genomes of Myliobatiformes will likely yield better resolved phylogenies.

ACKNOWLEDGEMENTS

The authors thank Mr. JH Wu for his kind help with data analysis and arrangements. We are very grateful to Dr. Lee-Shing Fang and Dr. Chi-Lun Wu for their encouragement and support. We are also grateful to the NSC (2002-2003) for partial support via research grants and to the National Museum of Marine Biology \& Aquarium, Pingtung, Taiwan for biodiversity research funding.

APPENDIX

The 12 species of Myliobatoidei used for phylogenetic analysis in this study were as follows: Urolophus aurantiacus (AF448028); Platyrhina sinensis (AF448004); Hexatrygon taiwanensis (AF447995); Aetoplatea zonura (AF447986); Rhinoptera javanica (AF448019); Manta birostris (AF448000); Mobula formosana (AF448001); Dasyatis kuhlii (AF447991); Dasyatis thetidis (AF447993); Urogymnus asperrimus (AF448027); Himantura gerrardi (AF447996); Himantura uarnak (AF447997); Squalus acanthias (Y18134); Chimaera monstrosa (AJ310140).

REFERENCES

Arnason U., A. Gullberg and A. Janke (2001) Molecular phylogenetics of gnathostomous (Jawed) fishes: old bones, new cartilage. Zool. Scr., 30: 249-255.
Buroker, N. E., J. R. Brown, T. A. Gilbert, P. J. O'Hara, A. T. Beckenbach, W. K. Thomas and M. J. Smith (1990) Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics, 124: 157-163.
Cao, Y., P. Waddell, N. Okada and M. Hasegawa (1998) The complete mitochondrial DNA sequence of the shark Mustelus manazo: evaluating rooting contradictions to living bony vertebrates. Mol. Biol. Evol., 15: 1637-1646.
Cecconi, F., M. Giorgi and P. Mariottini (1995) Unique features in the mitochondrial D-loop region of the European seabass Dicentrarchus labrax. Gene, 165: 149-155.
Chen, I. S., C. H. Hsu, K. T. Shao, P. J. Miller and L. S. Fang (1998) Sequence length and variation in the mitochondrial control region of two freshwater gobiid fishes belonging to Rhinogobius (Teleostei: Gobioidei). J. Fish. Biol., 53: 179-191.
Chen, I. S., P. J. Miller, H. L. Wu and L. S. Fang (2002) Taxonomy and mitochondrial sequence evolution in non-diadromous species of Rhinogobius (Teleostei: Gobiidae) of Hainan Island, southern China. J. Mar. Freshwat. Res., 53: 259-273.
Delarbre, C., N. Spruyt, C. Delmarre, C. Gallut, V. Barriel, P. Janvier, V. Laudet and G. Gachelin (1998) The complete nucleotide sequence of the mitochondrial DNA of the dogfish, Scyliorhinus canicula. Genetics, 150: 331-344.

Dunn, K. A., J. D. McEachran and R. L. Honeycutt (2003) Molecular phylogenetics of myliobatiform fishes (Chondrichthyes: Myliobatiformes), with comments on the effects of missing data on parsimony and likelihood. Mol. Phylogenet. Evol., 27: 259-270.
Inoue, J. G., M. Miya, K. Tsukamoto and M. Nishida (2000) Complete mitochondrial DNA sequence of the Japanese sardine Sardinops melanostictus. Fish. Sci., 66: 924-932.
Inoue, J. G., M. Miya, J. Aoyama, S. Ishikawa, K. Tsukamoto and M. Nishida (2001a) Complete mitochondrial DNA sequence of the Japanese eel Anguilla japonica. Fish. Sci., 67: 118-125.
Inoue, J. G., M. Miya, K. Tsukamoto and M. Nishida (2001b). Complete mitochondrial DNA sequence of the Japanese anchovy Engraulis japonicus. Fish. Sci., 67: 828-835.
Inoue, J. G., M. Miya, K. Tsukamoto and M. Nishida (2001c). Complete mitochondrial DNA sequence of Conger myriaster (Teleostei: Anguilliformes): novel gene order for vertebrate mitochondrial genomes and the phylogenetic implications for Anguilliform families. J. Mol. Evol., 52: 311-320.
Kawaguchi, A., M. Miya and M. Nishida (2001) Complete mitochondrial DNA sequence of Aulopus japonicus (Teleostei: Aulopiformes), a basal Eurypterygii: longer DNA sequences and higher-level relationships. Ichthyol. Res., 48: 213-223.
Kim, I. C., S. O. Jung, Y. M. Lee, C. J. Lee, J. K. Park and J. S. Lee (2005) The complete mitochondrial genome of the rayfish Raja porosa (Chondrichthyes, Rajidae). DNA Seq., 16: 187-194.
Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111-120.
Kumar, S., K. Tamura and M. Nei (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform., 5: 150-163.
Lee, W. J., J. Conroy, W. H. Howell and T. D. Kocher (1995) Structure and evolution of teleost mitochondrial control region. J. Mol. Evol., 41: 54-66.
McEachran, J. D., K. A. Dunn and T. Miyake (1996) Interrelationships within the batoid fishes (Chondrichthyes: Batoidea). In Interrelationship of Fishes (M. L. J. Stiassny, L. R. Parenti and G. D. Johnson eds.), Academic Press, San Diego, CA, USA, 63-84.

McEachran, J. D. and N. Aschliman (2004) Phylogeny of Batoidea. In Biology of Sharks and their Relatives (J. C. Carrier, J. A. Musick and M. R. Heithaus eds.), CRC Press, Boca Raton, FL, USA, 79-114.
Miya, M. and M. Nishida (1999). Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei: Stomiiformes): first example of transfer RNA gene rearrangements in bony fishes. Mar. Biotechnol., 1: 416-426.
Miya, M. and M. Nishida (2000) Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Mol. Phylogenet. Evol., 17: 437-455.
Miya, M., A. Kawaguchi A and M. Nishida (2001) Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol. Biol. Evol., 18: 1993-2009.
Nei, M. and S. Kumar (2000) Molecular Evolution and Phylogenetics. Oxford Univ. Press, New York, USA, 1-333.
Nelson, J. S. (2006) Fishes of the World (4th ed.) New Jersey, USA: John Wiley and Sons, 76-82.
Nishida, K. (1990) Phylogeny of the suborder

Myliobatidoidei. Memoirs of the Faculty of Fisheries, Hokkaido Univ., 37: 259-298.
Page, R. D. M (1996) Tree View: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci., 12: 357-358.
Posada, D. and K. A. Crandall (1998) Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817-818.
Rasmussen, A. and U. Arnason (1999a) Molecular studies suggest that cartilaginous fishes have a terminal position in the piscine tree. P. Natl. Acad. Sci. USA, 96: 2177-2182.
Rasmussen, A. and U. Arnason (1999b). Phylogenetic studies of complete mitochondrial DNA molecules place cartilaginous fishes within the tree of bony fishes. J. Mol. Evol., 48: 118-128.
Ronquist, F. and J. P. Huelsenbeck (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572-1574.
Stefanni, S., I. S. Chen and P. J. Miller (2002) A very compact mt-DNA control region in the widely distributed goby Pomatoschistus minutus (Teleostei: Gobiidae). J. Mar. Biol. Assoc. UK, 82: 1001-1003.
Swofford, D. L. (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods), version 4.b10. Sinauer Associates, Sunderland, MA.

達氏深水尾魧（Plesiobatis daviesi）之完整粒線體 DNA 序列分析

蕭聖代 ${ }^{1} \cdot$ 徐基新 2 •劉燈城 ${ }^{3}$ •陳義雄 ${ }^{4 *}$
${ }^{1}$ 行政院農業委員會水產試驗所海洋漁業組
${ }^{2}$ 國立中山大學海洋生物科技暨資源學系
${ }^{3}$ 行政院農業委員會水產試驗所
${ }^{4}$ 國立台灣海洋大學海洋生物研究所

摘 要

本研究利用 Long PCR 及 primer walking 的方式將達氏深水尾魟完整粒線體 DNA 完成定序，並分析基因排序與組成。達氏深水尾魟完整粒線體 DNA 全長 17514 個鹼基對，共由 37 個基因所組成，包含 2個核糖核酸基因（rns，rnl），13 個蛋白質基因（atp6，atp8，cox1－3，cob，nad1－6，nad4L）及 22 個傳遞者核酸基因（tRNA），與其他春椎動物相似。達氏深水尾魟與其他 7 種軟骨魚類的完整粒線體基因組的排序上並無明顯不同，但是達氏深水尾魟其介於 tRNA Pro 和 $\mathrm{tRNA} \mathrm{Ahe}^{\text {Phe }}$ 之間的主要非編碼區，又稱 D－loop，是目前已知的軟骨魚序列中最長的，共 1830 個鹼基對。而這段序列包含了兩段 47 個鹼基對的重複性片段，以及兩段具有保守性特徵的片段。建構其親緣關係樹後發現，達氏深水魟在演化上是與六鰓魟科為姊妹群，並且屬於燕魟亞目的基群。

關鍵詞：粒線體基因組，Long PCR，深水尾鮭（Urotrygon daviesi），達氏深水尾鮭（Plesiobatis daviesi）

[^1]
[^0]: ＊Correspondence：National Taiwan Ocean University， 2 Pei－Ning Rd．，Keelung 202，Taiwan．TEL： 886－2－2462－2192 ext．5320；FAX：886－2－2463－3152； E－mail：isc＠mail．ntou．edu．tw

[^1]: ＊通訊作者／國立海洋大學，基隆市 202 北寧路 2 號，TEL：886－2－2462－2192 ext．5320；Fax：886－2－2463－3152；E－mail： isc＠mail．ntou．edu．tw

