網漁具,因其曳網速度快,且網目細小,造成大量 幼小的魚蝦貝類被捕獲,嚴重破壞漁業資源甚巨。 尤其近幾年來大眼鯛、赤鯮、花身雞魚、白口、狗 母、臭魚蝦、胭脂蝦等之漁獲量大量明顯減少,尤 其赤鯮之漁獲體長逐年降低,其程度相當嚴重,究 竟是何因造成?是漁具規格?或努力量增加?還 是生態環境的變動?目前還在調查與瞭解中。

台灣東北部海域拖網漁業之管理研究

台灣東北部海域為台灣沿岸重要漁場,由於沿岸漁民為捕撈長額赤蝦(金鉤蝦),長年使細網目蝦拖網在該漁場作業,使許多經濟魚類如赤鯮、白□、黑□、紅目鰱、白帶等未成長就被大量捕撈且以下雜魚出售,造成經濟重大損失。本研究經蒐集整理宜蘭大溪魚市場拍賣資料(1997-2003年)、標本船漁況日報表(2003年1-12月)及分析長額赤蝦(2002年11月至2003年11月)之成長、成熟、產卵生物學特性,發現東北部海域蝦拖網主要漁獲物長額赤蝦1-5月CPUE値最低(圖1),1-3月及11-12月體長最小,4-5月及10-11月為長額赤蝦產卵期,3-5月蝦拖網之漁獲物中下雜魚比率最高,這段時期以蝦拖網捕撈長額赤蝦不但不符成本,且會造成長額赤蝦及經濟魚類資源

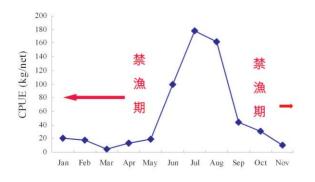


圖 1 長額赤蝦單位努力漁獲量 (CPUE) 之月別變化

受損:因此,建議每年 10 月至翌年 5 月禁止使用 蝦拖網漁具漁法作業,將有利該漁場之魚、蝦類資 源量及產値之提高。

火誘網集魚燈燈光功率與漁獲關係之研究

由於我國周邊沿近海域火誘網漁船之集魚燈 燈光功率急需規範,經本所租用瑞芳區漁會屬 19.94 噸之「林長」號漁船,於 2003 年 6 月 9 日至 10 月 28 日期間進行試驗 (圖 1) 之結果顯示,以集魚燈燈光功率設定於 80 瓩時之總漁獲效果較好;其次,對於被捕獲之各種魚類而言,則以白帶魚在燈光功率為 80 Kw 時之漁獲效果較好;而其他魚類之單位努力漁獲量,在燈光功率的高低之間,尚未檢測出有顯著之差異性。另一方面,於測試期間所捕獲之各魚種,其平均體長亦不會因燈光功率之不同,而產生較大之差異。在外在環境方面,集魚燈燈光對於魚群之誘集效果,會受月光之干擾,一般而言,以新月及彎月時之單位努力漁獲量較高,半月及凸月時較低 (圖 2)。前述結果,在標本船之漁況資料,亦有類似現象發生。

圖 1 利用集魚燈誘集魚群後實施棒受網試網所撈取之漁獲

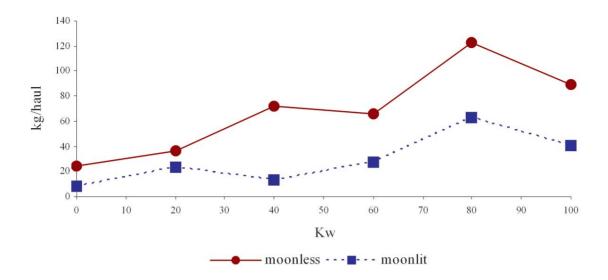


圖 2 於 2003 年 6 月 19 日至 10 月 28 日期間利用「林長號」漁船在台灣北部鼻頭角至富貴角之間海域試網,發現無月光夜晚之單位努力漁獲量比有月光之時段高

表 1 由 Duncan's multiple range test 之檢定結果,發現將集魚燈燈光功率設定為 80 瓩時之單位努力漁獲量較高

單位: Kg

Kinds of fish -	Kilowatts of fishing lamps						Degree of freedom	F-value	P > F
	0	20	40	60	80	100	(Corrected)		
總漁獲量	16.03 ± 27.26	33.74±63.72	59.79±114.78	46.32±39.62	<u>117.31</u> ±126.29	75.54±72.72	83	2.60	0.0314
鎖管	4.07±6.54	10.73±11.80	9.92±6.30	6.56±4.81	8.20±11.22	6.04±6.21	83	1.29	0.2758
白帶魚	2.41±4.33	3.37 ± 6.28	6.39±11.42	13.25±14.40	<u>31.52</u> ±38.23	17.95±25.99	83	4.08	0.0024
圓花鰹	0	17.86±66.82	28.79±106.85	2.52±7.44	41.62±132.56	1.87±3.67	83	0.73	0.6023
花腹鯖	0.69 ± 2.60	0.87±1.66	4.60±15.95	1.59±4.35	1.43±2.95	3.15±7.56	83	0.55	0.7404
鰮類	1.42 ± 2.70	0.58 ± 0.91	0.83 ± 1.34	0.69 ± 0.90	0.89 ± 1.45	3.23±7.93	83	1.12	0.3583
剝皮魚	7.14±26.73	0.03 ± 0.09	8.00±17.91	18.28±39.03	26.78±50.03	36.28±76.79	83	1.43	0.2242
其他魚類	0.29±0.58	0.31±0.85	1.26±2.18	3.44±10.58	6.87±21.20	7.02±10.98	83	1.19	0.3210

___ : 底線表示有顯著之差異

澎湖海域鰮、鎖管漁業資源之研究

鰮、鎖管漁業為澎湖海域重要之漁業資源,本所對該漁場資源調查最早始於 1962 年,主要針對澎湖沿海至台灣淺堆之水溫與?、鎖管魚群關聯性進行調查。本所於 1989 年初引進並接收美國NOAA-HRPT衛星漁場資訊,配合潮流流向、標本船漁獲資料分析、湧昇流以及冷暖水團形成之判斷,發現鎖管漁場形成與湧昇流形成頻度有關。根據曾等 (2003) 研究報告指出,利用地理資訊系統整合分析衛星表水溫及烏魚漁沉資料,已經被證實可以成功地應用在烏魚漁海況速報。由於烏魚是洄

游近於表水層之漁業資源,洄游習性也與表層水溫 有顯著相關,因此判斷衛星表水溫資訊可當作魚類 洄游情形的線索非常合理。而相同的模式是否可套 用在澎湖海域之傳統鰮、鎖管漁業資源的研究,是 本計畫的試驗研究重點。

根據衛星水溫資訊整理提供的資料及漁獲資料分析,臭肉鰮、鎖管之單位努力漁獲量與衛星遙測所顯示的表水溫關係皆不顯著 (圖 1 \ 2) (p > 0.05)。可能的原因是由於衛星只有在每日通過台灣上空的時間 (目前每日至少 8 次,每次 12-15 分鐘) 可以提供表水溫資訊,衛星取樣的時間點可