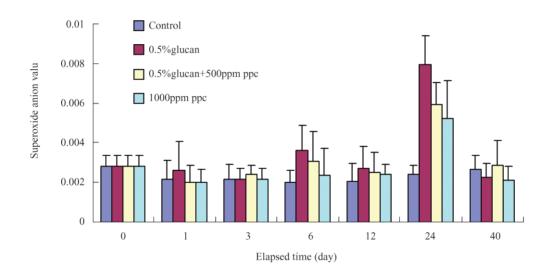
飼料。體重 600 g左右的黃鰭鮪幼魚,適應池塘的 環境、會攝食後,在背部肌肉包埋晶片,次日(14 小時後),即有強烈的攝食行為,顯示黃鰭鮪幼魚 對捕撈之操作的適應力亦相當強。陸上池塘養殖鮪 魚的困難點,為其對海水的清澈度及水質的要求較 高,養殖一段時間後,眼部容易產生氣泡、導致眼 盲症及不明症狀,導致食慾減退,甚至死亡的現 象。在箱網間搬遷鮪魚或置換不潔的網具,以連接 兩箱網的網具、形成魚道,較不易導致魚體皮膚擦 傷。箱網中的鮪類幼魚,可忍受數天因雨水沖刷陸 上泥土或污物所形成的混濁物,但如果箱網太小 (10 m),在風暴期間,網具因強徑海流導致變形, 可能使鮪魚因能見度不佳、擦撞箱網,導致皮膚受 損而死亡。是故,因應外海旦多風暴的養殖環境, 開發可沉式的大型箱網,為發展鮪類養殖的重要措 施。

箱網中養殖的黃鰭鮪

箱網中養殖的黃鰭鮪肥滿度高


海鱺中間育成階段品質強化技術之建立

海鱺箱網養殖為現今養殖漁業發展的主要重 點之一,且已有相當之規模。近年來海鱺箱網養殖 業者逐漸接受並肯定陸上中間育成之重要性,有些 業者自行完成中間育成階段,部分業者委託他人協 助,雖然解決了大型種苗取得問題,但常因大型種 苗品質良莠不齊,而影響日後的養成管理及活存 率,為解決此一問題,有關中間育成階段品質強化 技術之建立,為刻不容緩之課題。本計畫擬藉由免 疫賦活劑及營養強化物質添加於飼料中以強化魚 苗之體質,以提高海上箱網養殖活存率並降低生產 成本。本研究於飼料中添加 0.5%多醣體 (β-1,3-1,6 Glucan)、0.5%多醣體加上 500 ppm 多聚磷酸態維 生素 C 及 1000 ppm 多聚磷酸態維生素 C 等三種免 疫強化飼料,飼育已完成中間育成且達100克以上 之魚苗,檢測血液中超氧陰離子 (Superoxidase anion) 及 Lysozyme 做為冤疫力之指標,結果顯 示,餵飼三種冤疫強化飼料之各處理組,血液中超 氧陰離子於餵飼後第6天逐漸提升,第24天達最 高峰隨後即下降,然對照組並無明顯之升高現象, 魚苗血液中超氧陰離子之表現以餵飼添加 0.5%多 醣體之處理組最高。另血液中 Lysozyme 之變化情 形於餵飼後第6天達最高,隨後緩慢下降,至第 40 天測點時趨於常態值, 餵飼三種 宠疫強化飼料 之各處理組皆顯著高於對照組,魚苗血液中 Lysozyme 之含量以餵飼添加 0.5%多醣體加上 500 ppm 多聚磷酸態維生素 C 之處理組最高。本年度 完成中間育成 50000 尾 100 克以上之魚苗,移至箱 網前 5 天開始飼予添加 0.5% 多醣體之冤疫強化飼 料,移至海上後繼續餵飼10天,60天後評估活存 率為 78%,對照組僅 41%,效果非常顯著。

表1 試驗飼料之組成

	Diet			
	D1	D2	D3	D4
Vitamin C	0.01	0.01	0.06	0.11
Glucan	0	0.5	0.5	0
Other	98.8	98.8	98.8	98.8
cellulose	1.19	0.69	0.64	1.09

Other (%) : Fish meal 40, Soybean 30, Starch 12, Gelatin 5, Squid Trash 3, Fish oil 8, Vitamin premix 0.2, Vitamin C 0.01, Mineral premix 0.6

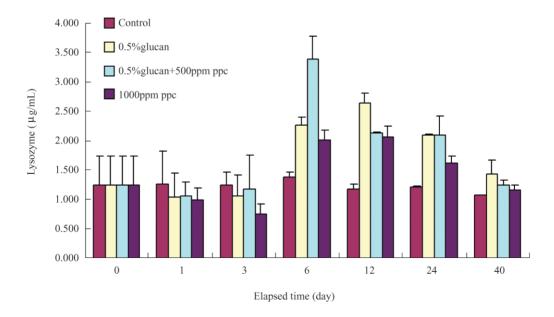


圖 2 海鱺餵飼不同免疫強化飼料血液中溶菌酶含量變化情形