雨水對蝦池養殖環境變化之探討

先後爆發肝胰腺桿狀病毒及白點桿狀病毒感染後,引起草蝦養殖事業一蹶不振,養殖業者損失慘重,但有些業者不輕易放棄,仍繼續努力;最近數年業者認為養殖過程中若遇到降大雨則更易引發病情,是否雨水對養殖環境會產生某些變化,進而影響草蝦的正常生理功能,並導致引發草蝦大量暴斃情形,值得研究,以期在養殖過程中能適時加以因應,進而改善水質環境,減少病害之發生。

2003 年台南地區全年降雨量為 888.5 mm,只達前 3 年平均值 52.57%,屬偏低年雨量,雨水質分

析:pH 平均值 5.97 ± 0.41 , SO_4^{2-} 平均值 2.7 ± 1.8 mg/L, NO_3^- 平均值 0.8 ± 0.7 mg/L, $C\Gamma$ 平均值 9.0 ± 6.7 mg/L Mg^{2+} 平均值 2.5 ± 2.0 mg/L, K^+ 平均值 1.3 ± 0.6 mg/L, Mn^{2+} 均值 0.04 ± 0.01 mg/L, Ca^{2+} 平均值 6.1 ± 4.2 mg/L,陽離子當量濃度以 Ca^{2+} 最高,而後依序為 $Mg^{2+} > K^+ > Mn^{2+}$ 。蝦養殖池降雨前後水質比較:化學離子成份變化, $C\Gamma \times Mg^{2+} \times K^+ \times SO_4^2$ 與 Ca^{2+} 等隨雨量明顯下降趨勢, $Mn^{2+} \times F^+$ 無顯著變化。 擬降雨量對養殖池水之水質變化硬度、總鹼度與總溶解固體量化學離子成份變化,隨模擬降雨量愈多則有下降之趨勢,但不隨時間而變化。

表 1 草蝦養殖池之化學物質分析

	XI +									
分析	養殖池(池號)	日期	下雨量	Phosphate (mg/L)	Silicate (mg/L)	Nitrate (mg/L)	NO ₂ -N (mg/L)	NH ₄ -N (mg/L)		
次序			(mm)	(IIIg/L)	(mg/L)	(Hig/L)	(mg/L)	(IIIg/L)		
1	下雨前養殖池(1)	7/23	26	0.046	0.210	1.4	0.006	0.052		
	下雨前養殖池(2)			0.130	0.210	1.0	0.004	0.049		
	下雨前養殖池(3)			0.080	0.240	2.2	0.001	0.036		
	下雨後養殖池(1)	7/24		0.046	0.120	1.2	0.045	0.058		
	下雨後養殖池(2)			0.092	0.100	0.8	0.001	0.049		
	下雨後養殖池(3)			0.050	0.160	2.1	0.001	0.078		
2	下雨前養殖池(1)	8/3	62	0.040	0.070	0.8	0.040	0.220		
	下雨前養殖池(2)			0.006	0.010	0.9	0.001	0.080		
	下雨前養殖池(3)			0.011	0.070	0.7	0.001	0.140		
	下雨後養殖池(1)	8/5		0.509	0.072	1.3	0.001	0.495		
	下雨後養殖池(2)			0.128	0.046	0.6	0.001	0.358		
	下雨後養殖池(3)			0.010	0.015	0.8	0.001	0.395		

甲殼素增進吳郭魚趸疫能力之研究

飼料中添加甲殼素 (chitosan) 與多醣體 (β-glucan),誘導增強吳郭魚細胞性冤疫能力,從魚體分離純化出 macrophage,在 *in vitro* 的條件下,進行 macrophage 吞噬葡萄球菌 (*Staphylococcus*

epidermidis) 之試驗。目的在於檢測試驗魚 macrophage 胞的吞噬能力,測試甲殼素或多醣體是 否可以有效提高 macrophage 吞噬細菌的活性,亦即 運用免疫學的方法來增強魚類細胞性免疫的能力,進而達到預防或減少魚類病害的發生率。 篩選試驗吳郭魚。試驗分三組進行,分別為甲殼素飼育組、多醣體飼育組、及對照組等。甲殼素飼育組吳郭魚平均魚體重為 130.07 g,平均魚體長為 18.7 cm,飼料為福壽牌成鰻鰻粉,投餌量為 1.5%魚體重,甲殼素添加量為 3%鰻粉量,平均每尾魚供應 0.058 g甲殼素 (0.045%魚體重)。多醣體飼育組吳郭魚平均魚體重為 133.90 g,平均魚體長為 18.9 cm,飼料為福壽牌成鰻鰻粉,投餌量為 1.5%魚體重,多醣體添加量為 3%鰻粉量,平均每尾魚供應 0.060 g多醣體 (0.045%魚體重)。對照組吳郭魚平均魚體重為 137.13 g,平均魚體長為 19.4 cm,飼料為福壽牌成鰻鰻粉,投餌量為 1.5% 魚體重。

無菌摘取脾臟組織放在含 1% penicillin /streptomycin (p/s),5% fetal calf serum (FCS) 之 L-15 培養液中,剪碎組織。細胞懸浮液加入 34/51% (v/v) percoll gradient,離心條件為 $400 \times g$,4%,30 min,再離心一次,沉澱巨噬細胞懸浮在 10% FCS 之 L-15,細胞濃度為 $3.3 \times 10^7 \circ$ 取 15 mm 圓形玻璃片放入 4 well flask 中,用 pipette 吸取細胞懸浮液滴入 well 中培養,在 20% 培養箱培養,培養時間為 1.5 小時,讓巨噬細胞沉澱,並粘附在圓形玻璃片上,準備進行細菌吞噬試驗。

從冷凍乾燥管取出真空冷凍乾燥葡萄球菌,培養在 Tryptic Soy Agar (TSA) 培養基,溫度為,24-48h,充分活化細菌,再轉入 Tryptic Soy Broth (TSB) 中大量培養 24-36小時 (30°) 。加入 0.5%

formalin solution 充分殺死細菌,細菌用 phosphate buffer saline (PBS) 洗 5 次,可完全去除 formalin,將細菌懸浮在 10% FCS 之 L-15 培養液中備用,細菌濃度調整為 1.6×10^7 cfu/mL。

巨噬細胞經 1.5 h 培養,細胞充分粘附在 4 well flask 中之圓形玻璃片上,以 L-15 + 2% FCS 洗 3 次,洗去未附著的細胞,加入含 10% FCS 之 L-15 之細菌懸浮液,靜置培養 10 分鐘,進行巨噬細胞吞噬細菌試驗,細菌吞噬試驗結束後細胞以中性福馬林固定 5 分鐘,用 PBS 洗 3 次,滴入 1% Giemsa solution 進行染色 1.5 小時,再用 PBS 洗 3 次,洗去殘留的染劑,室溫靜置乾燥,用 Entella 封蓋,放在顯微鏡下觀察。在顯微鏡下觀察時,隨機取樣,隨機選取 100 個巨噬細胞,詳細計算其吞噬葡萄球菌的數量,同時,比較甲殼素飼育組、多醣體飼育組、及對照組等試驗組,其巨噬細胞吞噬能力之差異。

in vitro 試驗巨噬細胞吞噬葡萄球菌之能力,試驗結果顯示,甲殼素飼育組與對照組,吞噬細菌的數量都小於 20 個,主要的吞噬範圍集中在 1-10 細菌,平均吞噬細菌的數量分別為 4.28 及 4.31,但多醣體飼育組吞噬能力很強,可以吞噬較多數量的葡萄球菌,有 17%細胞可以吞噬 21-25 個細菌,34%細胞可以吞噬 > 25 個細菌,平均吞噬細菌的數量 > 17.66。

表 1 以甲殼素與多醣體飼育吳郭魚,in vitro 試驗巨噬細胞吞噬葡萄球菌之能力

4 0 011		吞噬葡萄球菌的數量								
組別	1 - 5	6 - 10	11 - 15	16 - 20	21 - 25	> 25	平均吞噬量			
對 照 組	71 (71%)	23 (23%)	5 (5%)	1 (1%)	0	0	4.28			
甲殼素飼育組	84 (84%)	19 (19%)	3 (3%)	5 (5%)	0	0	4.31			
多醣體飼育組	11 (11%)	19 (19%)	11 (11%)	8 (8%)	17 (17%)	34 (34%)	17.66 *			

^{*} 多醣體飼育組巨噬吞噬量 > 25 的部分,均以 25 計算