二、生物技術領域

(一) 水產生物優良種原保存

紅色吳郭魚基因遺傳的探討

為探討台灣養殖紅色吳郭魚的基因遺傳機制,本 研究以 c02rF1、c03r 及 c02r×c07r 交配的第一子代, 並與雌親回交,進行品系純化及篩選同質性紅色基因。 養成 3 個月大的小魚,以目視未出現黑色素及可 看出黑色素子魚的比例, c02rF1 品系為 13:3; c03rF1 品系為 13:3, c07rF1 為 2:1, c02rQ × c07ro F2 品系為 1:1; c02rQ × c07r F1o 回交 雌親組比例為 1:1。紅色基因的遺傳呈現單基 因遺傳及多基因遺傳的多種表現模式。確實的 遺傳狀況還需近一步的驗證。

表 1 不同品系子代紅色與黑斑點子魚的分離情形

Parents	Total .	Phenotype		– Ratio (Red:black)	x	
		Red	Black		~	
c02rF1	1791	1393	398	13 : 3	14.1738*	
c03rF1	107	85	22	13:3	0.2303	
c07rF1	425	298	127	2:1	2.2776	
$c02r\mathbf{Q} \times c07r\mathbf{O}^{7}F2$	255	135	120	1:1	0.8824	
c02r♀ × c07r♂ F1 backcross	776	421	355	1:1	5.6134*	

* significant at p = 0.05

國内外主要吳郭魚品系之成長比較研究

為維持台灣吳郭魚養殖的競爭優勢,本研究以 蒐集較具養殖潛力的品系:泰國 AIT 引進之 Genetically male tilapia (GMT)、泰國原種尼羅吳郭 魚 (TN)、中國大陸的雜交單雄性吳郭魚 (CAT)、 台灣業者養殖的雜交單雄性吳郭魚 (FAT) 及本中 心保存的原種尼羅吳郭魚 (FN),共 5種品系進行 養殖比較,探討其比成長率、每日增重、餌料係數 及活存率等養殖相關問題。

養成 212 天結果如表 1,其比成長率、每日增 重及餌料係數均以 GMT 較佳,分別為 1.26%/day、 3.11 g/day 及 1.80;中國大陸引進的雜交單雄性吳 郭魚,每曰增重為 3.01 g/day,僅次於 GMT:業者 養殖的雜交單雄性吳郭魚在比成長率及餌料係數

等方面亦表現不錯,分別為 1.25%/day 及 1.84° 在雄性比例方面,以業者的單雄性吳郭魚最高,為 95%;其次是中國大陸引進的雜交單雄性魚為 92%,GMT 反而不高,僅 88%。雌魚生殖力以生 產 GMT 之泰國原種尼羅吳郭魚最強,在 6-12月 均能生產魚苗,本中心保存的原種尼羅吳郭魚的生 殖力較低,僅在 6-10月能生產魚苗。肥滿度以本 中心保存的原種尼羅魚最高,為 4.29,業者的單雄 性吳郭魚次之,為 4.18°各組之活存率都很高,均 在 98%以上。

Strains	Growth days	Initial average body weight (g)	Final average body weight (g)	SG (%/day)	AG (g/day)	FC	M (%)	CF	S (%)
GMT	212	53.19	685.32	1.26	3.11	1.80	88	4.08	100.00
TN	212	94.67	578.65	0.89	2.38	2.00	29	3.89	98.67
CAT	212	101.33	711.53	0.96	3.01	1.92	93	3.96	100.00
FAT	212	48.67	612.77	1.25	2.78	1.84	95	4.18	98.67
FN	212	78.00	594.20	1.00	2.54	2.00	54	4.29	100.00

GMT: Genetically male tilapia; TN: Nile tilapia from Thailand; CAT: all-male hybrid tilapia from China; FAT: all-male hybrid tilapia from farmer; FN: Nile tilapia conserved in Freshwater aquaculture research center. SG: Specific growth rate; AG: Daily weight gain; FC: Feed coefficient; M: Male ratio; CF: Condition factor; S: Survival rate.

開發何氏棘肥 RAPD 核苷酸指紋鑑定技術

台灣地處於亞熱帶,島內多山,造成河川短而 急促,但仍擁有七十餘種之初級性淡水魚(純淡水 生活魚類)。何氏棘肥(S. hollandi)主要分布於台 灣南部及東部之中大型溪流,如曾文溪、高屏溪、 卑南溪、秀姑巒溪、花蓮溪等;該屬魚類具有廣溫、 雜食性、個體大、生長快、肉質細嫩、無肌間細刺, 是一種優良的新興養殖品種。何氏棘肥目前被列為 台灣特有種及稀少魚類。全球同屬之魚種共有 8 種,其中有些學者認為喀氏倒棘肥(S. caldwelli) 與何氏棘肥為同種異名,故開發建立專一性極高之 RAPD 或微衛星 DNA 引子來證實,並作為種原及 不同來源之快速鑑定;期能運用分子生物技術來建 立台灣本土性及特有生物的核苷酸指紋基因庫,確 立水產種原庫及建立種原之永續利用。

分子遺傳研究資料如同形態形質資料,是為一種資訊,而現今核苷酸指紋係由基因層次來檢定物種之多態性與親源關係,摒棄傳統分類之主觀因素,更符合族群自然分類要求。現行核苷酸指紋分析以(1)隨機擴增多形性 DNA (RAPD) (2)微衛星DNA (Microsatellite DNA) (3) AFLP (Amplified Fragment Length Polymorphism)等方法。

而 RAPD 技術是 Williams et al.和 Welsh et al. 領導的兩個科研小組在 1990 年幾乎同時獨立創立 的一種 DNA 多形性的檢測技術。它是建立在聚合 酶連鎖反應 (PCR) 技術基礎上的 DNA 分析法, 此技術原理係在無需取得相關的檢測 DNA 序列情 況下,利用不同的隨機排列的 10 個鹼基 (bp) 寡 核苷酸單鏈為隨機引子 (Random primer),對研究 生物的基因組 DNA 作模板 (Temprate) 進行 PCR 擴增反應,然後依 PCR 反應產物 (DNA 片段) 的 多形性來進行遺傳分析。故短短的 10 年間裡已被 廣泛應用於細菌及動、植物群體遺傳學、遺傳育種 及生物系統分類與進化研究等諸多方面。因此本計 畫擬應用客觀、迅速之 RAPD 核苷酸指紋分析方 法,作為檢測分析。

本研究係利用 200 組商業化之 RAPD 引子來 篩選適當引子,作為分析研究用。結果有 26 組 RAPD引子在選定標準魚DNA上之隨機擴增DNA 片段具重複性、專一性的模式,其寡核苷酸序列 G+C 含量分析均高於 60%,可作為何氏棘肥的 RAPD 標記。對 24 種不同生物作比較,結果擴增 產物為完全不相同之模式;其中 NAPS #416 與 #588 對何氏棘肥產生獨特、唯一的標記 (unique marker)。